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ABSTRACT

The control of musical instrument physical models is dif-
ficult; it takes many years for professional musicians to
learn their craft. We perform intelligent control of a violin
physical model by analyzing the audio output and adjust-
ing the physical inputs to the system using trained Support
Vector Machines (SVM).

Vivi, the virtual violinist is a computer program which can
perform music notation with the same skill as a beginning
violin student. After only four hours of interactive training,
Vivi can play all of Suzuki violin volume 1 with quality that
is comparable to a human student.

Although physical constants are used to generate audio
with the model, the control loop takes a “black-box” ap-
proach to the system. The controller generates the finger
position, bow-bridge distance, bow velocity, and bow force
without knowing those physical constants. This method
can therefore be used with other bowed-string physical mod-
els and even musical robots.

1. INTRODUCTION

One well-known problem with physical modelling of mu-
sical instruments is control [1] – a musical instrument is a
non-linear dynamical system; some physical models even
include non-deterministic elements. Producing good sound
with such a system is difficult; professional classical musi-
cians spend more than ten years learning their instruments
before they can earn a living by performing. Therefore, we
can expect that autonomous control of a physical model
will require a great deal of research and training.

Rather than trying to reproduce the amount of control ex-
hibited by professional musicians, we created a computer
program which can be trained in a manner similar to a hu-
man violin student: by receiving feedback from a teacher
and “listening” to its output. After four hours of interac-
tive training, Vivi, the virtual violinist can play at approxi-
mately the level of a student with one year of experience.

This is achieved by asking a human user to classify a
series of audio examples created using a violin physical
model. The human judgements are used to train Support
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Figure 1. Music performance with Vivi.

Vector Machine (SVM) classifiers, which are used to ad-
just the bowing parameters when performing music (Fig-
ure 1). After a short period of “basic training”, Vivi can
practise scales and pieces of music. For each performance,
the human may identify any part of the audio which needs
adjustment; these corrections are used to re-train the SVM,
which can then perform the music again. Such corrections
will influence every subsequent performance; any training
on simple scales will apply to a Bach Partita.

1.1 Motivation

At the moment, producing a good violin sound can only
be done by highly-trained musicians. Playing a violin with
good intonation and good sound quality requires very ac-
curate fine muscle control. This level of muscle control
may be taken for granted by professional musicians, but
it is a serious problem for skilled amateurs and students;
many people who studied classical music as children stop
playing music later in life. In addition, violin playing can
become a physical impossibility due to advanced age or
various medical conditions.

Our goal is to enable anybody to create violin music, re-
gardless of physical disability or lack of training – the only
barrier to producing music should be the desire to do so.
People who would be satisfied with a “generic” perfor-
mance should only be required to supply the sheet music,
whereas those wishing to customize a performance should
only be required to add high-level expressive gestures.
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Figure 2. Music notation understood by Vivi.

Our work is also motivated by Miku Hatsune and the
Vocaloid singing synthesis [2]. By eliminating the physical
constraints of singing in a particular vocal range and style
(i.e. Japanese pop music), users of this software can cre-
ate vocal music which was previously impossible for them
to produce. This has resulted in an extremely impressive
range of music and videos from online collaborations [3].

1.2 Pedagogical inspiration and design goals

As the first author learned cello with the Suzuki method,
our design draws upon some of that philosophy:
• Students do not practise alone; a parent should be

involved in the daily practice.
• Students learn music from Suzuki violin book 1 [4],

with a corresponding emphasis on Baroque music.
• The left-hand fingering is given in the sheet music;

although Suzuki students do not read sheet music at
the beginning, parents ensure that the student fol-
lows the printed fingering.

• The bow-bridge distances are set according to the
dynamic. These are sometimes referred to as “bow
lanes”, or the “Kreisler highway” [5].

• The amount of bow for each note is often specified
by the teacher (such as “half” or “quarter bow”), and
the tempo is given by the piano accompaniment.

• Students do not know physical values such as the
characteristic impedance Zc of the string.

• Students are not expected to give expressive music
performances; a “robotic” performance is an accept-
able place to start.

We do not encourage inexpressive music, but a virtual vi-
olinist can be useful even without expressive performances.
We again consider Vocaloid to be an inspiration: musi-
cality can be added by the user while the software itself
strictly follows the given instructions.

To improve our testing framework, we wrote a piece of
music (Figure 2) which contains all the supported notation.

1.3 Sound and video examples

Examples of sheet music performed by Vivi are available 1 .
In addition to music, the website contains audio examples
which illustrate technical aspects of this paper.

1 http://percival-music.ca/smc2011.html

Section 2 gives an overview of related work. The rest of
the paper is generally structured from the fastest units of
time to the slowest. Physical modeling (which generates
samples at 44100 Hz) is described in Section 3. The con-
trol cycle (which modifies physical actions at 172 Hz) is
covered in Section 4. Training (which does not occur at a
constant rate) is covered in Section 5, while Section 6 cov-
ers performance rules (dealing with score events occurring
at approximately 1-4 Hz). We end with a few implementa-
tion details in Section 7 and the conclusion in Section 8.

2. RELATED WORK

Intelligent control of physical bowing parameters would
be impossible without a synthesis engine. We chose to
use the bowed-string physical modelling algorithm with
modal synthesis as described in Demoucron’s Ph.D. the-
sis [6]. This algorithm does not include some of the more
advanced knowledge of bow-string friction interaction [7],
the effects of torsional waves in a bowed string [8], or the
plastic thermal model of rosin friction [9], but it sounds
sufficiently “violin-like” for our needs. The main alterna-
tive to modal synthesis is digital waveguide synthesis [7].

An alternate method of creating violin sound, without us-
ing a physical model, is concatenative synthesis (or Spec-
tral Modeling Synthesis). This is an active research topic,
with recent dissertations on predictive spectral envelopes
for violin sounds [10], reconstructing violin bowing with
Bézier curves [11], and further research combining these
projects to synthesize violin sound [12].

There has been considerable interest in the bowing ac-
tions required to establish and maintain a good violin tone.
An early examination of the bow force required to reach
Helmholtz motion gave rise to “Schelleng diagrams” [13],
while an examination of the initial attacks produced “Guet-
tler diagrams” [14]. These have been re-examined with
more accurate measurements from real musicians and bow-
ing machines [15]. Some teachers are applying this scien-
tific knowledge to violin pedagogy [5].

Other work has focused on the control of musical instru-
ments. Proportional-integral-derivative (PID) controllers
have been used to control a plucked string simulation and
acoustic instruments [16, 17]. The famous flute-playing
robot WF-4RIV [18] uses an artificial neural network to
generate expressive music, and uses a control loop based
on the relative strength of even- and odd-harmonics, and
the overall sound intensity. The WF-4RIV also remembers
its own mistakes while performing a piece, and adjusts fu-
ture performances of that piece of music accordingly. An-
other group worked on a robotic violin bowing arm [19];
this project focused on reproducing the same sound when
bowing the open D string multiple times, and analyzed the
resulting sound by visually comparing the amplitude plots
and spectrograms.

Finally, objective analysis of violin tone quality has been
performed, allowing computers to classify sounds with high
accuracy. One project focused on judging sound quality of
violin instruments [20], while another classified a legato
violin note as being performed by a professional musician
or a student, and recognized mistakes in bow control [21].

http://percival-music.ca/smc2011.html
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Figure 3. Overview of the violin physical modelling. Variables with a subscriptn indicate an N-element vector, lines
without any text indicate samples of an audio signal, and all other variables are individual numbers.

3. VIOLIN PHYSICAL MODELING

We wrote Artifastring (“artificial fast string”), which im-
plements the bowed-string physical modelling with modal
synthesis as described in [6]. Artifastring was written in
C++, and is freely available 2 under the GPLv3. We hope
that it can be of use to other researchers without detailed
knowledge of acoustics, so that more people can work on
bowed string performance. To support widespread usage,
SWIG bindings 3 are also available.

An overview of the physical model is given in Figure 3,
and a summary of the variables used is given in Table 1.
We will cover only the most important equations here; for
the full details, see [6] or the Artifastring source code.

The synthesis begins with a stiff string with linear density
ρL, tension T , Young’s modulusE, diameter d, and second
moment of area for a circular cross-section I = πd4

64 . With
the sum of external forces F (x, t), the wave equation is:

ρL
∂2y(x, t)

∂t2
−T ∂

2y(x, t)

∂x2
+EI

∂4y(x, t)

∂x4
= F (x, t) (1)

This gives the dispersion relation with string length L:

ω0n =

√
T

ρL

(nπ
L

)2

+
EI

ρL

(nπ
L

)4

(2)

We define the modal displacement an(t) and force fn(t)
in terms of φn(x). We then add a damping coefficient
rn = B1 +B2(n− 1)2 to simulate various losses along
the string. Solving (1) and (2) gives us an an infinity of
equations, n = 1 . . .∞. We limit n to 100 as a compro-
mise between sound quality and computational efficiency.

än(t) + 2rnȧn(t) + w2
0nan(t) = ρ−1

L fn(t) (3)

The calculation of each time step begins with ahn(t) and
ȧhn(t); these are the new modal values if no external forces
are applied. To maintain a consistent terminology with [6],
we use his term “historical” and the h superscript, but we
believe that “free oscillation” would be more clear.

2 http://percival-music.ca/artifastring/
3 http://www.swig.org/

The external force F0 on the string therefore represents
the extra force that must be applied to make the string at
point x1 move as described by the relative bow velocity
∆v. If the bow is sticking to the string, ∆v = 0. If the
bow is slipping, a hyperbolic friction curve is used with the
coefficients of static friction µs, dynamic friction µd, slope
of the hyperbolic curve v0. Noise was added by picking a
random value 0.95 ≤ N(t) ≤ 1.0 for each calculation.

F0 = sign(vb)

µd +
µs − µd

1 + |∆v|
v0N(t)

Fb (4)

We can also express this force using variables C01, C02,
vh0 , and yh1 , but their definitions are too complicated to give
here; see [6]. Equations (4) and (5) are solved together; if
no real solution exists, or if vb∆v < 0, then we reject the
solution and set the bow to be sticking (∆v = 0).

F0 = C01(∆v + vb − vh0 ) + C02y
h
1 (5)

The finger forceF1 is modelled as an infinitely stiff spring
at x1. Once an(t) has been calculated, the bridge signal is:

Fbridge(t) =

√
2

L

N∑
n=1

an(t)

(
Tnπ

L
+ EI(

Tnπ

L
)3

)
(6)

These calculations are performed once for every string,
then the bridge signals are added together. The result of
the sum is convolved with the impulse response of tapping
a violin bridge; the output is our final audio signal.

y(x, t) String displacement at position x, time t

φn(x) Eigenvectors; φn(x) =
√

2
L sin nπx

L

an(t) Modal displacement
x0 Bow position (as a ratio of string length)
x1 Finger position (ratio of string length)
vb Bow velocity (m/s)
Fb Bow force (N)
s String number (selects which string to use)

Table 1. Main variables used in bowed-string algorithm.

http://percival-music.ca/artifastring/
http://www.swig.org/


4. VIOLINIST’S CONTROL

The virtual violinist must translate musical note data into
physical actions. Due to the design goals outlined in Sec-
tion 1.2, we cannot use theoretical equations (such as Schel-
leng’s “area of stability” [13] or Guettler diagrams [14])
which rely on physical constants. We also avoid “hand-
tweaking” any values – the goal is to create a virtual vio-
linist which can perform on any instrument (be it a physical
model or a violin-playing robot), so the algorithm should
be as general as possible.

Another difficulty is the non-deterministic element N(t)
in the physical model – a series of physical actions may
produce acceptable or unacceptable output depending on
the random seed. To address this problem, a feedback con-
trol loop is used (Figure 4).

The violin is a non-linear system; the effects of bowing
parameters are not easy to state. A rough generalization
is that the bow-bridge distance and velocity together set
the overall amplitude, while the bow force determines the
timbre and whether Helmholtz motion is achieved [15].

4.1 Pedagogical inspiration and physical parameters

The string s and finger position x1 can be calculated di-
rectly from each note, imitating the “fingerboard tape” of-
ten used with students. Although skilled violinists choose
different fingerings for expressive purposes, this is not ex-
pected from beginning students.

The “bow lanes” allow us to specify the bow-bridge dis-
tance x0 according to the dynamic. The length of bow and
note duration fixes the average bow speed. This still allows
for variation in the bow speed, but in general beginning vi-
olinists do not concern themselves with this. For simplicity
we have assumed the bow will accelerate to the target ve-
locity at the beginning of the note, and decelerate to 0 m/s
at the end of the note unless it is part of a slur. Parameters
x0 and vb are then specified from the dynamic (Table 2).
More details about these parameters are given in Section 6.

The missing parameter from our description of beginning
violin students is the bow force Fb. Our virtual violinist
therefore concentrates on bow force, and uses human input
during the training to improve the bow force calculations.

4.2 Bow force

Section 5.2 discusses how we calculate our initial force Fb

and force modifier K during training. In the control loop,
we alter the current Fb according to the selected SVM
classifier, which examines the audio output of the phys-
ical model. Our audio analysis and machine learning is

Dynamic Bow position x0 Bow velocity vb

(fraction of L) (m/s)
f 0.08 0.4

mf 0.10 0.33
mp 0.12 0.26
p 0.14 0.2

Table 2. Physical parameters determined by dynamic.
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Figure 4. Control details of Vivi.

done with Marsyas [22]. In addition to a typical set of au-
dio features (zero crossings, spectral centroid, rolloff, flux,
crest factor, and flatness measure), we also calculate the
difference between expected pitch (from s and x1) and the
detected pitch (from the YIN algorithm [23]). We used
a window size of 1024, and a hop size of 256. The ma-
chine learning produces a class c ∈ {1, 2, 3, 4, 5} (Table 3),
which is used to adjust the bow force: Fb ← FbK

(3−c).

4.3 Central controller

The central controller selects which SVM classifier to use;
we train a different classifier for each of the sixteen string-
dynamic combinations. The controller also handles the ac-
celeration of the bow, and adds a small amount of Gaussian
randomization to Fb and vb. This imitates the unsteady
muscle control of a beginning violinist.

A different SVM classifier was used for each string-dyn-
namic combination because each pair produces a different
timbre. The 10-fold cross-validation accuracy supports our
intuition: after four hours of training, the individual string-
dynamic classifiers were 96–99% accurate, while a single
classifier for all G string dynamics was 91% accurate, and a
single classifier for all strings played mf was 94% accurate.

5. TRAINING

We use human input to help train Vivi, but only at the level
of a “Suzuki parent” – the human gives feedback about
audio (classifying audio as in Table 3), but the precise de-
termination of parameters is done automatically.

Class c Human judgement of sound
1 not audible
2 “wispy” or “whistling”
3 acceptable
4 “harsh” or “detuned”
5 not recognizable as coming from a violin

Table 3. Classification of audio files.
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5.1 Basic training (human)

Training begins by asking the human to classify audio with
a constant bow force. Each audio file is created by running
the physical model for 1.0 seconds (to let the note “set-
tle”), then recording the next 0.5 seconds. We begin with
Fb = 1.0, then keep on doubling Fb after each audio file
is categorized until the user has ranked a file as being cat-
egory 5. We then return to Fb = 0.5 and keep on halving
Fb until the user has ranked a file as being category 1. If
any categories were omitted, then we keep on generating
new audio files between existing category boundaries until
we have at least one file for each category.

We repeated this process for three notes (seen in Figure 6)
for each string / dynamic combination. This produced 15–
20 audio files for each of the 16 SVM classifiers, with very
high accuracy (98–99% for dynamics on the lower three
strings, with the E string dynamics’ accuracy dropped to
96–97%) with 10-fold cross-validation.

We found that “Anomalous Low Frequencies” (ALF, some-
times referred to as “subharmonics” [24]) were produced
quite often on the E string; in one case, we thought that an
ALF note was a nicely-played note on the D string! For
this reason, we displayed the playing string to the human
so that they could correctly identify an ALF note as having
too much bow force.

�� ���� �� �������� � �
Calculating K

�
Basic training

� �
sul D

��� ��
���� ������ ����

sul D

��
Calculating Fb ������ ����

Figure 6. Musical patterns used in training the D string.
Repeat signs indicate a variable number of repetitions, de-
pending on human input or the algorithm.

5.2 Determining bow force K and Fb (automatic)

Figure 5 shows an overview of the training process after
basic training. The missing parameters for our feedback
control (Figure 4) are K and Fb, which we determine au-
tomatically from our classified audio files.

5.2.1 Calculating K (one per string-dynamic)

Recall thatK determines how much Fb is adjusted accord-
ing to the sound quality judgement. If K is too small, it
will take a long time to reach a good bow force. IfK is too
large, Fb will oscillate between too much and not enough
force. We begin by estimating three initial Fb values based
on the maximum force used in the “basic training”, Fmax.
We set Fb = { 1

16Fmax,
1
4Fmax, Fmax}. For example, a D

string played mf gives Fb = {0.25N, 1.0N, 4.0N}.
We define a note’s stability cost as (7), in terms of the list
C which is all the class values c produced by the trained
SVM classifier. C is then split into sub-lists Ai, in which
a sub-list (“area”) is defined by c changing from below 3
to above 3 (or vice-versa). For example, the list C =
[2, 3, 2, 4, 5, 3, 2] would becomeA = [[2, 3, 2], [4, 5, 3], [2]].

Note cost =

|A|∏
i

∑
c∈Ai

(3− c)2 (7)

The overall logic is that extreme sounds (categories 1 and
5) are worse than slightly bad sounds (categories 2 and
4). The ideal system would begin with a force below (or
above) the correct amount, then quickly move to a good
force (category 3). Sounds which alternate between cate-
gories 1,2 and 4,5 will maximize the overall multiplication.

We then perform the pattern in Figure 6, once for each
initial Fb, and multiply all the note costs together. The
resulting number has a large amount of variation, so we re-
peat this whole process 12 times and take the inter-quartile
geometric mean; this is the final cost of a candidateK (Fig-
ure 7). We select the candidate K with the lowest cost.
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Figure 7. Sample force factors of the D string played mf.
Extra points were added to show the spread of randomness.
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5.2.2 Calculating initial Fb (three per string-dynamic)

After calculating K, the real (i.e. not estimated) initial Fb

values are calculated from the range Fmin to Fmax. As
with the calculation for K, we calculate a candidate’s cost
by playing a musical pattern (1 bar) from Figure 6. The
Fb cost (8) is straightforward, but in this case C only rep-
resents the classifier values c that were part of the “attack”
portion of the note. The attack is over when (9) is true,
where LN is a list of the past N = 9 values, and M = 0.5.
This corresponds to “when the note is stable”.

Note cost =
∑
c∈C

(3− c)2 (8)

M >
1

N

∑
c∈LN

(3− c)2 (9)

The individual note costs are multiplied together, then the
process is repeated 4 times, and the inter-quartile geomet-
ric mean is the overall cost of the candidate Fb. After find-
ing the lowest cost, we “zoom in” to that area by setting
Fmin to the Fb immediately lower than our lowest value,
and Fmax to the Fb higher. The process is repeated, gath-
ering more candidates (Figure 8). We select the candidate
Fb with the lowest cost.

This whole process is repeated three times, varying the
left-hand finger positions as seen in Figure 6. For the sam-
ple D string mf, the initial Fb drops from 0.8 N (for an open
string) to 0.4 N (for a finger 4 semitones higher) to 0.3 N
(finger 7 semitones above open string).

Violinists will notice that this generates an “on the string”
bow-stroke. Skilled violinists will vary the amount of ini-
tial bow-force considerably, including starting with Fb =
0 for an “off the string” bow-stroke. However, the first
bow-stroke taught by the Suzuki method is “on the string”
– in fact, this bow-stroke is a large contributor to the “Su-
zuki sound” for which their students are so famous!

Figure 9. Screenshot of Vivi. From top to bottom the num-
bers represent: number of audio files classified, 10-fold
cross-validation accuracy, force factor K, and initial Fb

for a finger at 0 (open string), 4, and 7 semitones.

5.3 Practicing sheet music (human)

After the human has completed the one-time “basic train-
ing” and the computer has completed the automatic deter-
mination ofK and Fb, the bow control is extremely poor 4 .

To improve the bow control, Vivi should “rehearse” sheet
music selected by the human, who can then listen to the en-
tire performance, or listen to individual notes by clicking
on them. For each note, the user can correct any judge-
ments by selecting a portion of a note and indicating what
the category should be; this is shown in Figure 9. After cor-
recting a few notes, the user should tell Vivi to re-train the
SVM classifier, and then re-calculate K and/or Fb. Any
sheet music can be used for this interactive practice, but
scales are quite useful as they provide few distractions.

6. MUSIC PERFORMANCE

We now turn to the calculation of the note data which is the
input to Figure 4. Rather than providing a list of musical
notation, we refer to our “black-box” testing framework in
Figure 2, which includes all notation understood by Vivi.

6.1 Mapping basic notation to note data

Many aspects of musical notation can be translated directly
into physical actions with no debate. In the absence of
special string markers (“II...”), the written pitch will de-
termine the string and left-hand finger position. A notated
slur means that we should not change bow directions; with-
out a slur, we decelerate the bow speed to 0 m/s at the end
of the note, and set the next note’s direction to be the op-
posite of the current note.

The markers “pizz.” and “arco” are similarly clear – notes
that should be pizzicato are simulated as having a very
large Fb, pulling the string until the “bow” slips, and then
setting Fb to be 0. Arco notes return to the normal bowing.

4 http://percival-music.ca/smc2011.html

http://percival-music.ca/smc2011.html


Notation Musical action Value
Staccato Shorten duration 0.7
Portato Shorten duration 0.9
Accent Increase force 2.5
Last note on a string Lighten bow force 0.1 s

′′ ′′ 0.5Fb

Breath mark Shorten duration 0.6
′′ ′′ 0.3Fb

(all) Max. bow accel. 5.0 m/s

Table 4. Vivi’s interpretation of style-specific notation.
Unless units are given, all values are expressed as a fac-
tor of the unmodified value which would be used.

Text such as “frog”, “lh”, “mb”, “uh”, “tip” refers to the
position of contact along the bow; these are specified as
0.1, 0.25, 0.5, 0.75, and 0.9. An upbow or downbow mark
will set the bowing direction as specified.

6.2 Mapping style-specific notation to note data

Other aspects of musical notation are subject to interpre-
tation or musical styles. For now, we simply hard-coded
values for stylistic interpretation, as our focus was on con-
trol and training rather than expressive music performance.
We listened to Vivi’s performances of book 1 Suzuki music
[4] and adjusted parameters to match the way we expected
the pieces to sound. Values are given in Table 4.

(De)crescendi are interpreted as linear interpolation be-
tween the beginning and ending dynamics. The physical
parameters of fractional dynamics are similarly interpreted
as a linear interpolation of the two closest dynamics.

6.3 Variable skill

The timing and intonation can be deliberately degraded to
simulate a beginning violinist by applying Gaussian ran-
domization with standard deviation σ to the note’s pitch
and onset time. If a note occurs on an open string, then
we apply no randomization to the pitch, but still alter the
timing. We defined 4 skill levels, expressed in pairs of
(σpitch, σtiming) from worst to best: (0.5, 0.01), (0.1, 0.005),
(0.05, 0.001), (0, 0). Values were estimated by listening.

7. IMPLEMENTATION

Vivi was written primarily in python using the pyqt4 5 bind-
ings, and is freely available 6 under the GPLv3. Audio
analysis and machine learning was performed with Mar-
syas, while the “training” functionality was written in C++
and made available to the main application with SWIG.

Sheet music was written in LilyPond 7 . In addition to
creating PDFs, we extracted musical events from the score
by writing event listeners in scheme and attaching them to
the relevant portions of the sheet music engraving process.

5 http://www.riverbankcomputing.com/static/
Docs/PyQt4/html/

6 http://percival-music.ca/vivi.html
7 http://lilypond.org

Figure 10. Frame of automatically-produced video. Many
thanks to Marcos Press for creating the violin and bow
models in Blender, and releasing it under the GPLv3.

The audio analysis and machine learning provides a sig-
nificant performance penalty compared to running the phys-
ical model by itself. Generating the 29 seconds of audio for
the music in Figure 2 with the physical model alone took 8

4 seconds, while the complete feedback control took 17
seconds. Calculating K and the initial Fb forces for each
string-dynamic was a more substantial bottleneck, taking
326 seconds. Fortunately, this task is embarrassingly par-
allel, so on a processor capable of running four threads at
once it takes approximately 25 minutes to complete all au-
tomatic training. In addition to creating an audio file, we
also record all physical actions to a file. This can be used
to generate a video with Blender 9 (Figure 10).

8. CONCLUSIONS AND FUTURE WORK

We have presented Vivi, the virtual violinist; a computer
program which can perform sheet music with approximately
the skill of a violinist with one year of experience. Intel-
ligent control of the violin physical model is performed
with SVM classifiers, and some physical parameters were
pre-computed by simulating the performance of the control
loop before performing sheet music.

Some major facets of violin music are lacking – we do
not perform any glissandi, chords, or vibrato. This is no
accident; these skills are not taught to beginning Suzuki
violin students. We plan to follow the path of human stu-
dents, adding features in the same order in which human
students learn them. On a similar note, so far we have used
the same “style” for all sheet music. This worked for the
mostly-Baroque repertoire of book 1, but it will not suffice
for later volumes of Suzuki repertoire. We will therefore
add the ability for the user to select different “styles”, or
even automatically select a style based on the composer.

One possibility to improve the control loop is to add hap-
tic feedback to the machine learning. Human violinists us-
ing haptic feedback with a violin physical model can exert

8 Measured on an Intel Core2 Quad CPU running Ubuntu 10.04.
9 http://www.blender.org/

http://www.riverbankcomputing.com/static/Docs/PyQt4/html/
http://www.riverbankcomputing.com/static/Docs/PyQt4/html/
http://percival-music.ca/vivi.html
http://lilypond.org
http://www.blender.org/


much better control [25]. However, relying on haptic feed-
back may complicate any future research in using Vivi with
a robot violinist. Another possibility to improve the sound
quality is to perform more training, and/or investigate the
use of other machine learning algorithms.

Finally, we would like to teach Vivi how to play viola
and cello. The physical model should be able to simulate
other bowed string instruments, and our supervised train-
ing should be easily applicable to other instruments. Our
ultimate goal is to allow composers to generate audio for
an entire string quartet, given only the sheet music.
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[10] A. Pérez, “Enhancing Spectral Synthesis Techniques
with Performance Gestures using the Violin as a Case
Study,” Ph.D. dissertation, Universitat Pompeu Fabra,
2009.

[11] E. Maestre, “Modeling instrumental gestures: an anal-
ysis/synthesis framework for violin bowing,” Ph.D.
dissertation, Universitat Pompeu Fabra, 2009.

[12] E. Maestre, A. Pérez, and R. Ramı́rez, “Gesture sam-
pling for instrumental sound synthesis: violin bowing
as a case study,” in International Computer Music Con-
ference, 2010.

[13] J. C. Schelleng, “The bowed string and the player,”
Journal of the Acoustical Society of America, vol. 53,
no. 1, pp. 26–41, 1973.

[14] A. A. K. Guettler, “Acceptance limits for the duration
of pre-Helmholtz transients in bowed string attacks,”
Journal of the Acoustical Society of America, vol. 101,
pp. 2903–2913, 1997.

[15] E. Schoonderwaldt, “Mechanics and acoustics of vio-
lin bowing: Freedom, constraints and control in perfor-
mance,” Ph.D. dissertation, KTH, Sweden, 2009.

[16] E. Berdahl, G. Niemeyer, and J. O. Smith, “Feedback
Control of Acoustic Musical Instruments,” Technical
Report STAN-M-120, no. 120, June 2008.

[17] E. Berdahl and J. O. Smith, “Inducing Unusual Dy-
namics in Acoustic Musical Instruments,” in Interna-
tional Conference on Control Applications, 2007, pp.
1336–1341.

[18] J. Solis, K. Taniguchi, T. Ninomiya, K. Petersen, T. Ya-
mamoto, and A. Takanishi, “Improved musical perfor-
mance control of WF-4RIV: Implementation of an ex-
pressive music generator and an automated sound qual-
ity detection,” in Robot and Human Interactive Com-
munication, Aug. 2008, pp. 334–339.

[19] K. Shibuya, S. Matsuda, and A. Takahara, “Toward
Developing a Violin Playing Robot – Bowing by An-
thropomorphic Robot Arm and Sound Analysis,” in
Robot and Human interactive Communication, 2007,
pp. 763–768.

[20] P. Wrzeciono and K. Marasek, “Violin Sound Quality:
Expert Judgements and Objective Measurements,” in
Advances in Music Information Retrieval, Z. Ras and
A. Wieczorkowska, Eds. Springer Berlin / Heidelberg,
2010, vol. 274, pp. 237–260.

[21] J. Charles, “Playing Technique and Violin Timbre: De-
tecting Bad Playing,” Ph.D. dissertation, Dublin Insti-
titute of Technology, 2010.

[22] G. Tzanetakis, “Marsyas: a case study in implement-
ing Music Information Retrieval Systems,” in Intelli-
gent Music Information Systems: Tools and Method-
ologies, S. Shen and L. Cui, Eds. Information Science
Reference, 2007.
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