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Streamlined Tempo Estimation Based on
Autocorrelation and Cross-correlation With Pulses
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Abstract—Algorithms for musical tempo estimation have be-
come increasingly complicated in recent years. These algorithms
typically utilize two fundamental properties of musical rhythm:
some features of the audio signal are self-similar at periods related
to the underlying rhythmic structure, and rhythmic events tend
to be spaced regularly in time. We present a streamlined tempo
estimation method (stem) that distills ideas from previous work
by reducing the number of steps, parameters, and modeling as-
sumptions while retaining good accuracy. This method is designed
for music with a constant or near-constant tempo. The proposed
method either outperforms or has similar performance to many
existing state-of-the-art algorithms. Self-similarity is captured
through autocorrelation of the onset strength signal (OSS), and
time regularity is captured through cross-correlation of the OSS
with regularly spaced pulses. Our findings are supported by the
most comprehensive evaluation of tempo estimation algorithms
to date in terms of the number of datasets and tracks considered.
During the process we have also corrected ground truth annota-
tions for the datasets considered. All the data, the annotations,
the evaluation code, and three different implementations (C++,
Python, MATLAB) of the proposed algorithm are provided in
order to support reproducibility.

Index Terms—Audio signal processing, music information re-
trieval, rhythm analysis, tempo induction.

I. INTRODUCTION

EMPO estimation is a fundamental problem in music

information retrieval (MIR), vital for applications such
as music similarity and recommendation, semi-automatic audio
editing, automatic accompaniment, polyphonic transcription,
beat-synchronous audio effects, and computer assisted DJ
systems. Typically, automatic analysis of rhythm consists of
two main tasks: tempo estimation and beat tracking. The goal
of tempo estimation is to automatically determine the rate of
musical beats in time. Beats can be defined as the locations in
time where a human would “tap” their foot while listening to
a piece of music. Beat tracking is the task of determining the
locations of these beats in time, and is considerably harder in
music in which the tempo varies over time [1]. Both of these
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topics have received considerable attention and there is a large
body of published literature exploring various approaches to
solving them automatically.

In this work, we focus solely on the task of tempo estima-
tion or tempo induction (another term frequently used for the
same task). Algorithms for tempo estimation have become, over
time, increasingly more complicated. They frequently contain
multiple stages, each with many parameters that need to be ad-
justed. This complexity makes them less efficient, harder to op-
timize due to the large number of parameters, and difficult to
replicate. Our goal has been to streamline the tempo estimation
process by reducing the number of steps and parameters without
affecting the accuracy of the algorithm. An additional motiva-
tion is that tempo estimation is a task that most human listeners
(even without musical training) can do reasonably well. There-
fore, it should be possible to model this task without requiring
complex models of formal musical knowledge, although mim-
icking the basic human perception remains a challenging task.

One challenge particular to tempo estimation is that, although
most untrained listeners can track the overall speed of most
music, their estimates can often differ by an integer multiple.
For example, a march (a song with a very clear and steady beat,
specifically designed to permit non-musically-trained soldiers
to walk at the same speed) could be perceived as “one two three
four, one two three four” or “one and two and, one and two
and.” Another famous example is a waltz (a formal European
dance, again specifically designed to permit easy perception of
the beats), which could be perceived as “one two three, one two
three” or “one and a, one and a.” If the words in all the above
examples are said at the same rate (say, 150 words per minute)
but the perception of a “beat” is restricted to the numbers, then
the potential Beats Per Minute (BPM) of the march are 150 and
75, while the potential tempos of the waltz are 150 and 50. In
many cases, it is not meaningful to say that either one of those
pairs of numbers are incorrect.

After an early period in which systems were evaluated indi-
vidually on small private datasets, since 2004 there have been
three public datasets that have been frequently used to compare
different approaches. We have conducted a thorough experi-
mental investigation of multiple tempo estimation algorithms
which uses two additional datasets to the classic three datasets.
We show that our proposed streamlined tempo estimation
method (stem) demonstrates state-of-the-art performance that
is statistically very close to the best performing systems we
evaluated. The code of our algorithm, as well as the scripts used
for the experimental comparison of all the different systems
considered, is available as open source software in three dif-
ferent implementations (C++, Python, MATLAB). Moreover,
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all the datasets used and associated ground truth are publicly
available. By supporting reproducible digital signal processing
research we hope to stimulate further experimentation in tempo
estimation and automatic rhythmic analysis in general.

A. Related work

The origins of work in tempo estimation and beat tracking
can be traced to research in music psychology. There are some
indications that humans solve these two problems separately. In
the early (1973) two-level timing model proposed by [2], sep-
arate mechanisms for estimating the period (tempo) and phase
(beat locations) are proposed by examining data from tapping
a Morse key. A recent overview article of the tapping literature
[3] summarizes the evidence for a two-process model that con-
sists of a slow process which measures the underlying tempo
and a fast synchronization process which measures the phase.

Work in automatic beat tracking started in the 1980s but
mostly utilized symbolic input, frequently in the form of
MIDI (Musical Instrument Digital Interface) signals. In the
1990s the first papers investigating beat tracking of audio
signals appeared. A real-time beat tracking system based on
a multiple agent architecture was proposed in 1994 [4]. Each
agent corresponded to a particular tempo/phase hypothesis and
was scored based on how it was supported by the analyzed
audio data consisting of a discrete set of automatically detected
pulses corresponding to onsets. Another influential early paper
described a method that utilized comb filters to extract beats
from polyphonic music [5]. It also introduced the idea of
continuous processing of the audio signals rather than discrete
onset locations.

There has been an increasing amount of interest in tempo es-
timation for audio signals in recent years. A large experimental
comparison of various tempo estimation algorithms was con-
ducted in 2004 as part of the International Conference on Music
Information Retrieval (ISMIR) and presented in a journal ar-
ticle [6]. A more recent experimental comparison of 23 algo-
rithms was performed in 2011, giving a more in-depth statistical
comparison between the methods considered [7]. The original
2004 study established the evaluation methodology and data
sets that have been used in the majority of subsequent work,
including ours. There has been a growing concern that algo-
rithms might be over-fitting these data sets created in 2004. In
our work we have expanded both the number of datasets and
music tracks in order to make the evaluation results more reli-
able. Although there is considerable variety in the details of dif-
ferent algorithms, there are some common stages such as onset
detection and period analysis that are shared by most of them.
An overview of different algorithms and the type of thythmic
models and processing steps they employ can be found in [8].

A fundamental concept in tempo estimation algorithm is
the notion of onsets. Onsets are the locations in time where
significant rhythmic events such as pitched notes or transient
percussion events take place. Some of the previous algorithms
use hard onset decisions, i.e. their input is a discrete list of
onset locations over time [4], [9], [10], [11]. An alternative
is to use a more continuous representation in which a “soft”
onset strength value is provided at a regular time locations.
The resulting signal is frequently called the onset strength

signal (OSS) [12], [13], [14]. The next step is to determine the
dominant periods based on the extracted onset information.
The previous approaches for period detection fall into some
common groups. Histogramming methods are based on com-
puting inter-onset intervals (IOI) from discrete lists of onset
locations, that are then accumulated in a histogram whose bins
correspond to the periods of interest [11]. In autocorrelation
methods [15], [16], [17] the onset strength is analyzed period-
ically typically at intervals of several seconds by computing
the autocorrelation function of each interval. The peaks of
the autocorrelation function should correspond to the period
length of the different metrical levels of the underlying rhythm.
Oscillating filter approaches use the input data to either adapt
a non-linear oscillator whose frequency represents the tempo
and whose phase represents the beat locations [18] or a bank of
resonating filters at fixed periods [5], [19]. In all these cases,
the typical output is a representation called a beat histogram or
beat spectrum which captures the amount of confidence or beat
strength [16] for each candidate tempo for the data that has
been analyzed. A generalization of this representation is used in
multiple agent approaches [4], [20], [14], [21]. Multiple tempo
and pulse hypotheses are considered in parallel and tracked
over time. In some cases multiple onset detection function or
even different beat trackers can be utilized simultaneously.
Each “agent” keeps track of its score and at the end the “agent”
with the highest score is selected as the estimated tempo. In
order to track changes in tempo and beat locations over time,
a common approach is to utilize dynamic programming [22].
Finally, other approaches [12], [23], [19] assume that there
is a probabilistic model that characterizes the generation of
rhythmic events. The goal of such algorithms is to estimate the
parameters of this generative process, typically using standard
estimation procedures such as Kalman filtering, Markov Chain
Monte Carlo, or sequential Monte Carlo (particle filtering)
algorithms [24].

Finally, we highlight examples of previous work that have
been influential in the design of stem. Our work is similar in
spirit to the computationally efficient multipitch estimation
model proposed in [25]. In that work, the authors showed
how previous, more complicated, algorithms for multiple
pitch detection could be simplified, improving both speed
of computation and complexity without affecting accuracy.
An influential idea has been the use of cross-correlation of
“ideal” pulse sequences corresponding to a particular tempo
and downbeat locations with the onset strength signal [26]. The
use of variance to “score” the different period candidates when
cross-correlating with pulse sequences with different phases
was inspired by the phase autocorrelation matrix approach
proposed by [27]. One of the issues facing tempo estimation is
that algorithms frequently make octave errors, i.e. they estimate
the tempo to be either half or twice (or a third or thrice) the
actual ground truth tempo [28], [29]. This ambiguity is also
common with human tapping. Our work only deals with halved
or doubled tempos. Recently, machine learning techniques
for estimating tempo classes (“slow”, “medium”, “fast) [30],
[31] have been proposed and used for reducing octave errors,
for example by using the estimated class to create a prior to
constrain the tempo estimation process [32]. Our goal has been
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to take these concepts, simplify each step, and combine them
in an easily-reproducible algorithm.

B. Improvements over previous paper

An earlier version of the algorithm described in this article
was presented at the International Conference on Audio, Speech
and Signal Processing (ICASSP) in 2013 [33]. In this work we
have further simplified the processing steps of the method. More
specifically, we no longer utilize Beat Histograms and do not
retain a separate tempo candidate from the Beat Histogram. In-
stead, all cumulative processing as well as the detection of the
tempo candidate are done directly in the generalized autocorre-
lation lag domain. In addition, the description of the algorithm
has been expanded with more figures, text, and equations im-
proving understanding. We also provide updated experimental
results based on corrected ground truth and implement a more
sophisticated machine learning scheme to determine whether
the tempo should be doubled. Finally, we provide three different
open source implementations (C++, Python and MATLAB) that
have all been tested and provide identical results. Together with
the datasets and associated ground truth, these implementations
support reproducibility which is increasingly becoming impor-
tant in signal processing research [34].

II. ALGORITHM

The proposed approach follows a relatively common archi-
tecture with the explicit design goal to simplify each step as
much as possible without losing accuracy. There are three main
stages to the algorithm, as shown in Fig. 1. The initial audio
input has a sampling rate of F, 4 = 44100 Hz.
1) Generate Onset Strength Signal (OSS)
The time-domain audio signal is converted into a signal
which (ideally) indicates where humans would perceive
onsets to occur. The OSS is also at a lower sampling rate;
Fso = 344.5 Hz.

2) Beat Period Detection
The OSS signal is split into overlapping windows roughly
5.9 seconds long, and each segment is analyzed for the
tempo. After examining the range of annotated tempos in
the datasets, we chose a minimum tempo of 50 BPM and
maximum tempo of 210 BPM. The output of this step is
a single tempo estimate, expressed as a lag of samples (of
F,0). The sampling rate of these tempo estimates is Fsg =
2.7 Hz.

3) Accumulator and overall estimate
The tempo estimates are accumulated, and at the end of the
track an overall estimate (in BPM) is derived from the ac-
cumulated results. A heuristic is used to determine whether
this estimate is correct or whether it should be halved or
doubled.

In contrast to many existing tempo estimation and beat
tracking algorithms, we do not utilize multiple frequency bands
[19], perform peak picking during the onset strength signal
calculation [9], employ dynamic programming [22], utilize
complex probabilistic modeling based on musical structure
[19], [23], and our use of machine learning is simple and

Audio input (Fs4 = 44100 Hz)
I
v
Generate OSS

(window 1024, hop 128)
(window 23.2 ms, hop 2.9 ms)

OSS (Fso = 344.5 Hz)

UL o)
v

Beat Period Detection
(window 2048, hop 128)

(window 5.9 s, hop 0.37 s)
l Tempo lag (Fsp = 2.7 Hz)

| lag 178 samples, ... (cont) ‘
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overall estimate

(1 track)
Final BPM (1 per track)
116 BPM

Fig. 1. Dataflow diagram of the tempo estimation algorithm. Left: processing
blocks. Right: type of data, and an example of the data.

limited. The following sections describe each of the main
processing steps in detail.

A. Generate Onset Strength Signal (OSS)

The first step is to compute a time-domain Onset Strength
Signal (OSS) from the audio input signal. The final OSS is at
a lower sampling rate than the audio input, and should have
high values at the locations where there are rhythmically salient
events that are termed “onsets.” Beats tend to be located near
onsets and can be viewed as a semi-regular subset of the onsets.

A large number of onset detection functions have been pro-
posed in the literature [35], [10]. In most cases, they measure
some form of change in either energy or spectral content. In
some cases, multiple onset detection functions are computed
and are either treated separately for period detection or com-
bined to a single OSS [5], [17]. After experimentation with sev-
eral choices we settled on a simple onset detection function that
worked better than the alternatives and can be applied directly
to the log-magnitude spectrum. The dataflow diagram and an
example are shown in Fig. 2.

1) Overlap: We begin by segmenting the audio (originally
at 44100 Hz sampling rate) into overlapping frames of 1024
samples with a hop size of 128 samples. This produces a set
of frames with a sampling rate of & 344.5 Hz.

2) Log Power Spectrum: Each frame is multiplied by a Ham-
ming window function, then we compute the magnitude spec-
trum with the Discrete Fourier Transform. We define | X (k, n)|
as the magnitude spectrum at frame n and frequency bin k. We
further define Lp as the log-power magnitude spectrum,

Lp(k,n) =1In(1+1000.0 - | X (k,n)|) (N

3) Flux: We calculate the spectral flux by summing the log-
magnitudes of the frequency bins [8], [17] that have a positive
change in log-magnitude over time. NV is the number of FFT
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Fig. 2. Dataflow diagram for OSS calculation. Left: processing blocks. Right:
example of data.

filtered

bins representing positive frequencies, N = 513. The DC-offset
FFT bin 0 is omitted from the spectral flux calculation.

Ipp(k,n) is an indicator function selecting the frequency
bins in which there is a positive change in log-magnitude,

Fy(n) = i: (Lp(k,n)— Lp(k,n—1))-Ipp(k,n)
k=1

0 | X(k,n)|—|X(k,n—1)<0

Ipp(k‘,‘n): {1 (2)

otherwise

This flux calculation reduces the dataflow from a series of
frames (of 257 samples) at 344.5 Hz to a 1-dimensional signal
at 344.5 Hz.

4) Low-pass filter: The signal is further low-pass filtered with
a l4th-order FIR filter with a cutoff of 7 Hz, designed with the
Hamming window method. 7 Hz was used as it is twice the
maximum BPM value of 210 BPM (or 3.5 Hz).

The output of this filter is our Onset Strength Signal. Subse-
quent stages of our algorithm (Section II-B and Section II-C)
use this to estimate the tempo of the audio, but the OSS could
also serve as the initial step to an onset detection or beat tracking
algorithm.

B. Beat Period Detection

Having generated the OSS, we now estimate the tempo for
each portion of audio. In particular, we examine frames of the
OSS which are 2048 samples long. This corresponds to approx-
imately 6 seconds of audio ( % ~ 5.94 s), similarly to [17].
The hop size of the Onset Strength Signal is 128 OSS sam-
ples corresponding to approximately 0.37 seconds. Each anal-
ysis frame of the OSS is denoted by 12, with a total of M frames.
Therefore, the algorithm requires 5.9 seconds for an initial es-
timate of the tempo and updates this tempo estimate approxi-
mately once every 0.37 seconds.

The dataflow diagram is shown in Fig. 3.

1) Overlap: We begin by segmenting the OSS (originally at
344.5 Hz sampling rate) into overlapping frames of 2048 sam-
ples with a hop size of 128 samples. This produces a set of
frames with a sampling rate of ~ 2.7 Hz.

2) Generalized Autocorrelation: Autocorrelation is applied
to the OSS to determine the different time lags in which the
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Fig. 3. Dataflow diagram for beat periods detection. The autocorrelation plots
(2nd and 3rd down) only show the range of interest (98 to 414 samples).

OSS is self similar. The lag (x-axis) of the peaks in the autocor-
relation function will correspond to the dominant periods of the
signal which in many cases will be harmonically related (integer
multiples or ratios) to the actual underlying tempo. We utilize
the “generalized autocorrelation” function [25] whose compu-
tation consists of zero-padding to double the length, computing
the discrete Fourier transform of the signal, magnitude compres-
sion of the spectrum, followed by an inverse discrete Fourier
transform:

Am(t) = DFT Y| DET(0SS(m))|%) 3)
The parameter ¢ controls the frequency domain compression
and ¢ is the lag in OSS samples. Normal autocorrelation has a
value of ¢ equal to 2 but it can be advantageous to use a smaller
value [25]. The peaks of the autocorrelation function tend to get
narrower with smaller values of ¢, resulting in better lag resolu-
tion. At the same time, for low values of ¢ the performance dete-
riorates as there is more noise sensitivity. We have empirically
found ¢ = 0.5 to be a good compromise between lag-domain
resolution and sensitivity to noise.

Our algorithm uses autocorrelation lag values for the re-
mainder of the processing, but some readers may feel more
comfortable dealing with BPM as that is how musicians discuss
tempo. The BPM can be calculated from the autocorrelation
lag:

60 - E%O
t

BPM = 4)

3) Enhance Harmonics: The autocorrelation A,,, has peaks
corresponding to integer multiples of the underlying tempo as
well as other dominant periods related to rhythmic subdivisions.
To boost harmonically related peaks, two time-stretched version
of the A,,, (by factors of 2 and 4) are added to the original re-
sulting in an enhanced autocorrelation £ AC"

EACm(t) = Am(t) + Am(z ) t) + Am(4 ’ t) Q)
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% 40
o 28
0 500 1,000 1,500 2,000
time (samples)
2 ®
g 1.5
g 1 T T
Sozl | Te te o
0 500 1,000 1,500 2,000

time (samples)

£ 300
S 200
J% 100

0 20 40 60 80 100 120 140 160
phase (samples)

Fig. 5. Example of evaluating pulse trains. Top: one particular OSS frame.
Middle: pulse train for a tempo lag of 178 samples (116 BPM) with ¢ = 100.
Bottom: cross-correlation between the OSS and all ¢ = {0,1,2...177}. Note
that the hop-size of the beat period detection is 128 samples, so even though this
particular frame will not involve the last portion of the OSS frame, that data will
be used in a later frame.

4) Pick peaks: The top 10 peaks in the enhanced autocorre-
lation FAC are extracted; these are the tempo candidates for
the scoring. Only peaks between the minimum and maximum
autocorrelation lag are considered,

) 60 - Fio
min lag = LmJ =98 6)
60 - Fyo

min _BP]WJ " )

max lag = \‘
5) Evaluate pulse trains: Once the candidate tempos from the
FE AC have been identified for a 2048-sample frame of the OSS,
the candidates are evaluated by correlating the OSS signal with
an ideal expected pulse train that is shifted in time by different
amounts. There are two inputs to the process: a frame of the OSS
signal (before the generalized autocorrelation is calculated), and
the 10 tempo candidates extracted from the £ AC. As shown
by [26], this corresponds to a least-square approach of scoring
candidate tempos and downbeat locations assuming a constant
tempo during the analyzed 6 seconds. Our tempo algorithm is
not concerned with downbeats, but we adopted it since this ap-
proach provided a useful way to evaluate candidate tempos. The
cross-correlation with an impulse train can be efficiently per-
formed by only multiplying the non-zero values, significantly
reducing the cost of computation. Given a candidate tempo lag
in OSS samples P and a candidate phase location ¢ (the time
instance a beat occurs), we create three sequences of pulses with
v =1,1.5,2:

Ippw=¢+vBP B=01,23 (8)

Each sequence should be understood as a beat pattern corre-
sponding to multiples of the candidate P; musically speaking,
these capture common integer relationships based on meter.
These three sequences are summed to form a single sequence,
where Ip 41 has weight 1.0, and Ips 15 and Ip 4o have
weight 0.5. The combined sequence is called Ip ;. This process
is shown in shown in Fig. 4.

The Ip , impulse train is cross-correlated with the OSS frame
m, with ¢ = {0,1,2...(P — 1)}. This is shown in Fig. 5.
If an index of the impulse train falls outside the OSS frame
(for example, at 60 BPM the ¢ 4+ 2k P index can extend as far
as 8 seconds), that pulse is omitted from the cross-correlation.
This adds a slight penalty to the maximum value of this cross-
correlation for tempos less than 71 BPM.

When scoring a particular tempo candidate P, the resulting
impulse signal is cross-correlated with the OSS for all possible
phases ¢. We define pp($, m),

pp(d,m) =088, xIp, ¢=0.1,...(P—-1) (9
as the vector of cross-correlation values for all phases ¢ and
candidate tempo P in OSS frame . The tempo candidates are
then scored based on this vector. Two scoring functions are cal-
culated: SC,, the highest cross-correlation value over all pos-
sible ¢, and S, the variance of cross-correlation values over
all possible ¢, as suggested by [27]:

SC.(P,m) = vgr(pp(qﬁ, m))

SCL(P,m) = max(pp(¢,m)) (10)
@

The rationale behind using the variance as a scoring criterion
is that if the onset signal is relatively flat and there are no pro-
nounced rhythmic events, there will be small variance in the
cross-correlation values between the different “phases.” How-
ever if there are pronounced rhythmic onsets the variance will
be high. These two score vectors are normalized so that they
sum to 1 and are added to yield the final score for each tempo
candidate P in frame m:

SC,(P,m)
SC(P,m) = -
(2,m) > SCL(Pym)

SC,(P,m)
> SCL(Pym)

(11)

The highest scoring tempo lag candidate L,,, is selected for
the frame m:

L,, = argmax SC(P, m)
p

(12)

The algorithm accumulates these estimates and makes a
single overall estimate of the entire track (Section II-C), but
the OSS and period detection method could be used to pro-
vide causal tempo estimates which could trigger events from
recorded audio. If tempo updates are required more often than
every 0.37 seconds, the hopsize could be reduced accordingly.
However, these tempo estimates are not sufficient for beat
tracking, as they make no attempt to track tempo estimates (and
the offset for the pulse trains) from one frame to the next; in
addition, our algorithm is more accurate when these estimates
are accumulated for an entire audio track.
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Fig. 6. Dataflow diagram for accumulation and overall estimate.

C. Accumulation and overall estimate

The final step of the algorithm is to accumulate all tempo
lag estimates L,, from each frame of the OSS. The dataflow
diagram is shown in Fig. 6.

1) Convert to Gaussian: In most music, the tempo fluctuates
slightly throughout the music. Even when the tempo is steady,
the OSS and beat period detection calculations can result in a
slightly different estimate L,,. To accommodate these fluctua-
tions, instead of accumulating a single value for L,,, we create
a Gaussian curve G, with 4 = L, and ¢ = 10:

1

Gf(a’v*u)z/%z
oV 2w

(13)

Using a fixed o for different lag estimates results in a grad-
uated range of tempo estimates in the BPM domain. Given a
single lag estimate L, the Gaussian is slightly biased towards
higher tempos. In addition, slower tempos have a narrower
range. To illustrate, we will give the range of BPMs covered by
a tempo candidate lag 10 samples. A Gaussian curve for an
estimate of 60 BPM will cover -2.8% to 4+3.0%; an estimate of
120 BPM will cover -5.5% to +6.2%; and an estimate of 180
BPM will cover -8.0% to +9.5%.

2) Accumulator (sum): The G,,, for each frame is accumu-
lated in a Tempo Estimate Accumulator C. ' is a vector long
enough to hold all possible autocorrelation lags, and is initialize
to be 0,

Copp =Cp1 + Gy (14)

3) Pick peak: At the end of the audio track, we pick the index
with the highest value in our tempo estimate accumulator C, and
convert it to a BPM value to be our overall tempo lag estimate L.

4) Octave decider: Converting the tempo lag estimate di-
rectly into a tempo T = % in BPM produces many es-
timates which are half the ground-truth and some which are
double the ground-truth. This algorithm (with no tempo dou-
bling or halving) shall be called stem — base as it serves as
a baseline algorithm. In particular, out of 4011 files, 2100 are
correct, while 1310 are half the ground-truth BPM and 208 are

TABLE I
CONFUSION MATRIX OF STEM-SVM3 TRAINING.
0.5 1.0 2.0 ]
74 134 0 0.5
30 1853 305 1.0
0 408 902 | 2.0

double the ground-truth. If we could accurately predict whether
the tempo estimate 7" should be multiplied by 1, or 2, the accu-
racy would jump from 52% to 85%; if we could decide between
1, 2, or 0.5, the accuracy would jump to 90.2%.

The simplest possible improvement would be to set a
threshold so that any tempo below it would be doubled. This
algorithm (stem — heur) should not be understood as a sug-
gestion for practical use; rather, we present this method as
a way of investigating the idea of automatic doubling. The
doubling threshold of 71.9 BPM was determined using simple
machine learning (a decision tree) and an oracle approach
based on the ground truth data for training. The “feature” is the
tempo candidate and the classification decision is whether to
double or not. This can be viewed as an extremely simplified
version of the more complex machine learning approaches that
have been proposed in the literature [32], [36], [31].

A somewhat more advanced algorithm (stem — svm3) uses
a support vector machine (SVM) with a linear kernel to de-
cide whether to output 7', 27, or 0.5T. We use 3 features ex-
tracted from the tempo estimate accumulator C'. The first fea-
ture is the sum of values below the overall tempo lag estimate
L; the second is the sum of values close to 0.5L. In both cases,
we consider 10 samples to be the threshold for the “area of in-
terest.” The third feature is simply the candidate lag L itself.

L—-10 0.5L+10
=) Cl), Fo= Y C(i), Fs=L (19
=0 1=0.5L—10

To train stem — heur, we selected files for which dou-
bling or not would produce the correct annotation. To train
stem — svm3, we also selected files for which halving would
produce the correct annotation. Of the 4011 files in total, an or-
acle approach of comparing the candidate 7" to the ground-truth
data revealed that 2045 files should not be doubled, 1344 should
be doubled, and 622 annotations were incorrect regardless of
doubling. We omitted the 622 incorrect answers and used the
remaining 3369 files for training. stem — heur was trained
with Weka’s! ConjunctiveRule, a simple decision rule; the
10-fold cross-validation accuracy was 78.0%. stem — svm3
was trained with SMO, the traditional method of training SVM
machines; the 10-fold cross-validation accuracy was 76.3%,
with the confusion matrix shown in Table 1.

III. EVALUATION

The proposed algorithm (stem) was tested against 7 other
tempo estimation algorithms on 6 datasets of 44100 Hz, 16-bit
audio files, comprising 4011 audio tracks in total. As with other
tempo evaluations [6], [7], two accuracy measures are used: Ac-
curacy 1 is the percent of estimates which are within 4% BPM

Thttp://www.cs.waikato.ac.nz/ml/weka/
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124 BPM

audio

116 BPM

seconds

Fig. 7. Example of incorrect ground truth in BALLROOM dataset. The file
ChaChaCha/Media — 103416.wav was annotated as being 124 BPM, but it is
actually 116 BPM.

of the ground-truth tempo, and Accuracy 2 is the percent of esti-
mates which are within 4% of a multiple of £, 1, 1, 2, or 3 times
the ground-truth tempo.

Following the measure of statistical significance used in [37],
[7], we tested the accuracy of each algorithm against our accu-
racy with McNemar’s test, using a significance value of p <
0.01. The null hypothesis of this test is that if a pair of algo-
rithms produces one correct and one incorrect answer for a cer-
tain audio track, there is an equal probability of each algorithm
giving the correct answer. Given & = the number of instances
where algorithm A is correct while algorithm B is incorrect, and
¢ = the number of instances where B is correct and A is incor-
rect, the test statistic is (bb:fg‘ . This statistic is compared to the
x? distribution with 1 degree of freedom.

A. Datasets and Ground Truth

Shared datasets are vital for the comparison of algorithms be-
tween different researchers, and the tempo induction commu-
nity has been accumulating tempo-annotated audio collections
starting with the MIREX tempo induction competition in 2004
[6]. However, in addition to having shared datasets, it is impor-
tant that these datasets contain correctly-annotated ground truth.
Testing algorithms on flawed data can produce inaccurate esti-
mates of the algorithms’ accuracy in the best case, and in the
worst case it may lead researchers to tweak parameters sub-op-
timally to produce a higher accuracy on the flawed data. Links
to all of the datasets are available at our webpage to facilitate
reproducible research (Section V).

We found that three of the five datasets used in tempo in-
duction experiments contained 4%—10% incorrect annotations,
with the correct ground truth varying up to 30% away from the
annotated ground truth. One example is shown in Fig. 7. Tempo
collections which contain corrected data from previously pub-
lished papers are indicated with a star *.

To investigate the data annotations, we examined a subset of
“questionable” tempo annotations. We defined “questionable”
as “files for which two of the top three algorithms did not sat-
isfy Accuracy 2.” This is very similar to the selective sampling
method used in [38], [39], wherein the difficulty of beat tracking
audio tracks is calculated by examining the mean mutual agree-
ment between a “committee” of beat trackers. Previous experi-
ments [33] with the original tempo annotations showed that the
top three algorithms other than our own (gkiokas, klapuri,
and zplane; see Section III-B for information about these al-
gorithms) had 91.0%, 89.3%, and 87.1% accuracy 2. Out of the

3794 annotations, 368 were “questionable” and examined man-
ually, while the remaining 3426 were accepted without any fur-
ther action. The remaining files were examined manually by an
experienced musician with a Masters degree. If there was an ob-
vious tempo (generally given by drums) which differed from the
annotated tempo, the ground truth was altered. If there were two
plausible tempos (such as music which could be interpreted as
i or g meter), we did not alter the ground truth.

ACM MIRUM* (1410 tracks) was originally gathered with
crowd-sourced annotations [40], but was further processed by
[36] to remove songs for which the tempo annotations differed
significantly. This collection primarily consists of popular songs
from the pop, rock, and country genres. Unfortunately, the data-
base from which these songs were gathered contained multiple
versions of the same song and [40] only recorded the author
and title, not the specific version. [36] provided? digital IDs for
30-second excerpts in the 7Digital? collection. We used those
IDs to download the mp3 files from 7Digital. Although many
versions of the same song may have a similar tempo, we found
some examples where they differed by 30%. While creating the
ACM MIRUM database, the author noted that “When the API
[30-second audio excerpt retrieval] returned several items, only
the first one was used. Due to this process, part of the audio
tracks we used may not correspond to the ones used for the
experiment of [40]. We estimate this part at 9%.” [36, p. 48].
This estimate was quite accurate; out of the 155 automatically-
flagged “questionable” files, we found that 135 files (9.6%) con-
tained an obvious tempo which differed significantly from the
annotated tempo.

BALLROOM* (698 tracks) arose from the 2004 competition
conducted in [6]. This collection consist of music suitable for
ballroom dancing; as such, they had very stable tempos with
strong beats. 48 annotations were flagged as “questionable” and
were examined manually; of those, 32 annotations (4.6%) were
corrected.

GTZAN GENRES* (999 tracks) was originally created for
genres classification [15], but we added tempo annotations
to these songs. The collection includes 10 genres with 100
tracks per genre, however as noted in [41], one of the files
suffered corruption to 80% of the audio. We omitted that file
(reggae.00086.wav) from this tempo collection. 84 other files
were flagged as “questionable”; we corrected the tempo of 24
files (2.4%).

HAINSWORTH (222 tracks) came from [12]. Audio comes
from popular songs, classical music (both instrumental and
choral), and world music. 36 files were flagged as “question-
able”, but manual examination did not show any compelling
alternate tempos, so no alterations were made. A longer discus-
sion about this dataset is given in Section III-C.

ISMIR04 SONG (465 tracks) arose from the 2004 competi-
tion conducted in [6]. 45 files were flagged as “questionable”,
but there were no compelling alternate tempos. A longer discus-
sion about this dataset is given in Section III-C.

SMC MIRUM (217 tracks) is a dataset for beat tracking
which was created by [38], [39] by taking audio which was

2http://recherche.ircam. fr/anasyn/peeters/pub/2012_ ACMMIRUM/
3http://www.7digital.com/
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TABLE 11
TEMPO ACCURACY, RESULTS GIVEN IN %.

Accuracy 1 results

stem algorithms
files svm3 heur Dbase echonest gkiokas zplane klapuri ibt qm_vamp scheirer

ACM MIRUM* 1410 73.3 70.6 55.6— 72.1 72.7 70.1 68.9 63.0- 63.9- 56.5-
BALLROOM* 698 65.6 66.3 40.8- 89.8+ 63.2 66.9 64.9 64.3 66.9 58.2-
GTZAN GENRES* 999 78.3 74.6 63.4— 72.5~ 71.7- 68.9— 70.5- 61.0- 58.8— 57.7-
HAINSWORTH 222 69.8 71.6 41.0- 72.1 64.4 69.8 71.6 72.5 68.0 53.2-
ISMIR04_SONGS 465 61.1 58.7 57.0 63.2 57.0 56.3 58.1 46.7- 43.0- 46.0-
SMC_MIRUM 217 27.6 19.4 194 18.9 35.0 18.4 18.0 17.5 12.4- 13.8-
Dataset average 62.6 60.2 46.2 64.8 60.7 58.4 58.6 54.2 52.2 47.6

Total average 4011 69.1 66.7 52.4- 71.4 66.5 64.8— 64.7- 58.9- 58.2— 53.4-

Accuracy 2 results
stem algorithms
files svm3 heur Dbase | echonest gkiokas =zplane klapuri ibt gqm_vamp scheirer

ACM MIRUM* 1410 97.1 97.3 96.8 94.9 98.0 93.8 96.9 93.2 93.0 82.3-
BALLROOM* 698 95.0 92.8 93.1 96.3 98.0 94.8 92.8 90.3 90.8 81.2—
GTZAN GENRES* 999 94.7 95.1 95.0 91.6 93.9 89.1 92.5 87.0- 87.7- 77.6—
HAINSWORTH 222 86.9 86.9 86.9 84.2 84.7 82.4 84.2 82.0 71.5 69.4-
ISMIR04_SONGS 465 86.7 87.3 88.0 86.0 91.0 82.6 89.5 76.6— 79.8 72.0-
SMC_MIRUM 217 45.6 46.5 47.0 34.1 51.6 31.8- 41.9 36.9 30.9- 25.8-
Dataset average 84.3 84.3 84.5 81.2 86.2 79.1 83.0 77.6 76.6 68.0

Total average 4011 91.6 91.5 91.4 89.4 92.9 87.5- 90.6 85.5- 85.6— 76.0-

particularly difficult for existing beat tracking algorithms.
Since this dataset contains ground-truth beat times, we took the
median inter-beat time as the ground-truth tempo.

B. Other Algorithms

We briefly describe the algorithms and provide pointers to
more detailed descriptions. gkiokas [42] has the best Accu-
racy 2 performance. It is significantly more complicated than
our proposed approach as it uses a constant-Q transform, har-
monic/percussive separation algorithm, modeling of metrical
relations, and dynamic programming. zplane is a commercial
beat tracking algorithm* used in a variety of products such as
Ableton Live and was designed for whole songs rather than
snippets. klapuri [19] uses a bank of comb filters and simul-
taneously estimates three facets of the audio: the atomic tatum
pulses, the tactus tempo, and the musical measures using a prob-
abilistic formulation. It is also more complicated than our pro-
posed method. echonest is version 3.2.1 of the Echo Nest track
analyzers, and achieved the highest Accuracy I performance.
The algorithm is based on a trained model and is optimized for
speed and generalization. ibt [14], [21] uses multiple agents
which create hypotheses about tempo and beats that are con-
tinuously evaluated using a continuous onset detection func-
tion. gm — vamp [13] is implemented as part of the Vamp audio
plugins® which outputs a series of varying tempos. It is a beat
tracking algorithm and thus outputs a set of tempos indicating
the varying tempo throughout the audio file. To compare this set
to the single fixed ground-truth tempo, we took the tempo in the
longest segment (the “mode” tempo). We also evaluated this al-
gorithm using the weighted mean of those varying tempos and
the median tempo, but these had lower accuracy than the mode.
scheirer [5] was created in 1996 and uses a bank of parallel

4[aufTAKT] V3, http://www.beat-tracking.com
Shttp://developer.echonest.com/
Shttp://vamp-plugins.org/

comb filters for tempo estimation. It was selected as a baseline
to observe how tempo induction has improved over time.

C. Results and Discussion

Table II lists some representative results comparing the
proposed method with both commercial and academic tempo
estimation methods. The + and — indicate that the difference
between this algorithm and stem is statistically significant.
Bold numbers indicate the best-performing algorithm for this
dataset. The “Dataset average” row is the mean of the algo-
rithm’s accuracy between all datasets, while the “Total average”
is the accuracy over all datasets summed together. For some
of the datasets and algorithms previously published results
[7], [6] might slightly differ due to the corrected ground-truth
annotations used in our experiments. For algorithms that had
variants such as ibt, we selected the best performing variant.
As can be seen stem — svm3 has the second-best performance
in both Accuracy 1 and Accuracy 2. Although it is not the best
performing in Accuracy 2 the performance is not statistically
different than the best performing algorithm.

One of the difficulties of the accuracy 1 measure is that many
pieces have two different plausible “finger tapping” tempos,
generally related by a factor of 2 or 3. For example, a particular
waltz may be annotated as being 68 BPM or 204 BPM. The dif-
ference can depend on the specifics of the music but also on the
annotation method — tapping a finger can be comfortably per-
formed at 204 BPM, but foot tapping cannot be performed that
quickly and would thus attract an annotation of 68 BPM. Even
if no physical tapping motion is performed, this distinction can
still influence the annotators. When the annotator listens to the
music, is she thinking about conducting an orchestra, or playing
bass notes with her left hand on the piano?

The two datasets with very stable beats (ACM MIRUM* and
BALLROOM*) have very high Accuracy 2 scores (98% with
the gkiokas algorithm), while the Accuracy 1 score suffer from
the problem of not knowing which multiple of the tempo was
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chosen by the specific annotator(s) of that file. The notable ex-
ception is the echonest algorithm which achieved an Accuracy
1 score of 89.8% in BALLROOM*.

HAINSWORTH contains a number of files with changing
tempo, which poses an obvious problem for annotators required
to specify a single BPM value. For example, if a piece of music
plays steadily at 100 BPM for 10 seconds, slows to 60 BPM over
the course of 2 seconds, then resumes playing at 100 BPM for
the final 5 seconds, what is the overall tempo? Since this dataset
was primarily intended for beat tracking, the annotated ground-
truths are the mean of all onsets. However, in some applica-
tions of tempo detection (e.g., DJs matching tempo of songs),
the “mode” tempo would be more useful than the “mean.”

ISMIR2004 SONGS contains a few songs which could be
interpreted as either i or g , as well as more unusual meters such
as i . In addition, it contains some songs with changing tempos;
again, there is no clear-cut musically correct answer.

Most files in the GTZAN GENRES* collection have a steady
tempo, but songs from its blues, classical, and jazz genres con-
tain varying tempos.

The SMC MIRUM dataset was obviously the most chal-
lenging; this is not surprising as it was specifically constructed
to serve that purpose.

Finally, we shall explain the differences between these results
and our previously-published results in [33]. As mentioned
in Section III-A, we correct the ground-truth for the ACM
MIRUM, BALLROOM, and GTZAN GENRES datasets. In
addition, the previous echonest analyzer was a pre-release
build of 3.2 whereas this paper used echonest 3.2.1 release.
The previous qm — vamp algorithm was calculated using the
weighted mean of varying tempos, however we later determined
that using the mode produced better results, so we include those
in this paper. The klapuri, zplane, and gkiokas algorithms
were previously run on a copy of ISMIR04 SONGS which
was missing one file. When we discovered that problem, we
adjusted the evaluation scripts to fail if the filenames do not
match exactly between the lists of ground-truth and detected
tempos. This led to the discovery that approximately 5% of the
tempo estimates from scheirer were misplaced’.

D. Beat Tracking Preliminary Investigation

The proposed algorithm has been designed and optimized ex-
plicitly for the purpose of tempo estimation. At the same time,
the cross-correlation with the sequences of pulses can be viewed
as a local attempt at beat tracking. Table III shows the results of
a preliminary investigation which compares the proposed algo-
rithm with some representative examples of beat tracking algo-
rithms. We were able to obtain beat tracking information for two
of the datasets considered. The SMC MIRUM dataset was cre-
ated and described by [39] and the beat tracking annotation for
the BALLROOM dataset were obtained via [43]. All the results
except the second entries for Klapuri were computed using our
evaluation infrastructure. The second entries from Klapuri are
from the previously reported results ([43], [39]).

"The output occasionally included beat information, but the script which ex-
tracted the tempo estimate was not sufficiently flexible to handle files where the
beat information was the final line of the output. The script has been fixed.

TABLE III
BEAT TRACKING RESULTS

BALLROOM
BT AML{(%) F-measure (%) Inf. Gain (bits)
stem 514 59.9 2.02
klapuri 86.7 76.1 2.85
klapuri [39] 87.3 - -
ibt 75.1 70.9 2.07
scheirer 54.9 68.1 2.11

SMC_MIRUM
BT AML+(%) F-measure (%) Inf. Gain (bits)
stem 17.9 27.5 0.69
klapuri 339 36.2 0.92
klapuri 339 36.2 0.92
ibt 23.1 274 0.71
scheirer 18.5 30.2 0.69

As can be seen, our proposed algorithm performs poorly com-
pared to other available algorithms for beat tracking. As ex-
pected, performance is significantly better in the BALLROOM
dataset compared to the SMC_MIRUM, which has been explic-
itly designed to be challenging for beat tracking. The poor per-
formance of our approach is not unexpected, as it has been de-
signed explicitly for the purpose of tempo induction rather than
beat tracking. Although we did not perform a detailed analysis
of the beat tracking failures, it is straightforward to speculate
about why our current approach fails and how it can be im-
proved. As we process the audio signal in overlapping windows
we only output beats for the part of the window that has not been
processed before. Combining beat location estimates from mul-
tiple overlapping windows would probably increase reliability.
The estimated beat locations are the regularly spaced pulses for
the best tempo candidate and phase. If the “best” pulse train is
detected off beat it will still give the correct tempo but do poorly
in beat tracking. A possible improvement would be to search for
local peaks in the onset strength function in the vicinity of the
regularly spaced pulses in order to deal better with small local
tempo fluctuations. There is also no continuity between the beats
estimated in one window and the next. Finally, we perform beat
tracking in a causal fashion so we do not take advantage of the
accumulation and the final doubling heuristic. A non-causal al-
ternative that would probably perform better would be to take
the final tempo as the starting point for finding a sequence of
beat locations across the track. A more complete investigation of
beat tracking performance and a system for beat tracking based
on the processing steps of the proposed method is beyond the
scope of this paper.

IV. DISCUSSION OF COMPLEXITY

In this paper we make the claim that the proposed algorithm is
simplified compared to existing tempo induction systems. The
simplicity (or complexity) of an algorithm is difficult to analyze
and can refer to different properties including algorithmic com-
plexity in terms of number of floating point operations, com-
putation time in terms of a specific implementation, number of
stages and parameters, and the difficulty of implementing a par-
ticular algorithm. A full analysis of these properties for all sys-
tems referenced is beyond the scope of this paper as it would
probably take another full journal article to do it properly. Some
of the issues that make such an analysis difficult are 1) some of
the other systems described also perform beat tracking so direct
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comparison would be unfair, 2) the implementation language
and degree of optimization can have dramatic impact in actual
computation time, 3) for some algorithms (zplane, echonest)
we do not have access to the underlying source code, 4) the dif-
ficulty of implementation is also affected by availability of code
for processing blocks such as the Fast Fourier Transform.

In order to address the issue of complexity we contrast
our proposed approach with the three top performing systems
(gkiokas, klapuri, ibt) for which we have access to their
implementation and description. In terms of extra stages, in
contrast to gkiokas we do not perform harmonic/percussion
separation. In addition, our accumulation strategy is simpler
than dynamic programming, we do not utilize a constant-Q
transform, and the number of features used in the machine
learning stage is smaller. The bank of comb filters used in
klapuri can be considered more complicated to implement
(and probably slower) than our use of the Fast Fourier Trans-
form, for which efficient implementations are widely available.
In addition, the probabilistic tracking at multiple rhythmic
levels is more complicated. However, the klapuri algorithm
is designed to perform accurate beat tracking whereas our
approach only uses beat tracking indirectly to support tempo
estimation but is not optimized for this task. Finally, the
multi-agent approach of ibt can be considered a more com-
plicated version of our strategy of estimating candidate tempos
and their associated phases with more complex tracking over
time. In terms of implementation complexity, the published
descriptions of these algorithms, in our opinion, tend to be more
complex and have more details but it is hard to objectively
quantify this. We encourage the interested reader to read the
corresponding papers and contrast them with the description of
our algorithm. Ultimately we believe that there is no easy way
to claim that our algorithm is simpler than the alternatives but
at the same time in our opinion there is reasonable justification
for that claim. One can determine empirically whether a partic-
ular algorithm meets their particular needs and constraints and
choose from what is available.

A. Contribution of Portions of the Algorithm

In terms of computation, the most time-consuming process is
the computation of the Fast Fourier Transform (FFT) for calcu-
lating the onset strength signal as well as the computation of the
FFTs for the generalized autocorrelation of the onset strength
signal. To investigate the contribution of each part of the algo-
rithm, we altered or disabled individual portions of the algo-
rithm and tested the results. This could be considered a form of
“leave one out” analysis. It does not capture the whole range of
interplay between distinct modules, but a few interesting facets
can still be gleaned from the results.

To evaluate the algorithm’s performance without the uncer-
tainty presented by machine learning, we temporarily disabled
the doubling heuristic. The Accuracy 1 measure is therefore
lower than we would otherwise expect, but the Accuracy 2 is still
a good measure of the algorithm’s performance with the specific
modification. In addition to those two measures, we added two
others: Oracle 1, 2 and Oracle 0.5, 1, 2. These correspond to an
“ideal” multiplier decision-maker: If we knew whether to mul-
tiply by 1 or 2 (or 0.5, 1, or 2), what would the accuracy be?

TABLE IV
RESULTS AFTER ALTERING PORTIONS OF THE ALGORITHM. DEFAULT
VALUES ARE SHOWN IN GRAY BACKGROUND, AND TIME IS
REPORTED IN MEAN SECONDS (AND STANDARD DEVIATION) FROM
BENCHMARKING THE BALLROOM TEMPOS DATASET.

Accuracy Oracle
Generate OSS 1 2 12 0512 Time
FFT window 256 514 90.0 | 83.0 88.7 229.4 (0.8)
512 51.0 90.5 | 84.0 89.0 330.8 (0.8)
1024 524 914 | 85.0 90.2 545.4 (2.2)
2048 524 914 | 849 89.9 997.0 (1.1)
No low-pass filter 50.0 90.2 | 83.1 88.5 536.6 (2.4)
Accuracy Oracle
Beat Period 1 2 12 0512 Time
Autocorrelation ¢ = 2.0 | 58.0 803 | 75.7 79.9 541.3 (1.7)
c=04 | 520 91.1 | 84.1 89.9 553.6 (1.6)
c=0.5 | 524 914 | 850 90.2 545.4 (2.2)
c=0.6 | 533 912 | 86.2 89.7 553.6 (2.7)
Harmonic enh.: none 51.6 899 | 85.1 88.7 540.3 (2.2)
2 519 909 | 859 89.7 543.9 (1.2)
24 524 914 | 85.0 90.2 545.4 (2.2)
234 51.8 90.6 | 84.6 89.5 543.9 (2.0)
No pulse train 444 88.0 | 454 85.7 540.1 (1.1)
Accuracy Oracle
Accumulator 1 2 12 0512 Time
Gaussian: disable 52.8  89.1 82.4 87.8 545.1 (1.3)
o=5 524  91.1 | 849 89.9 544.5 (1.0)
o=10 524 914 | 85.0 90.2 545.5 (2.2)
o=15 522 90.8 | 84.8 89.6 5459 (2.4)

These show the maximum possible Accuracy I. In most cases,
Oracle 0.5 1 2 is very close to Accuracy 2. The results are shown
in Table IV.

Out of those modifications, the most interesting case is when
performing a normal autocorrelation (¢ = 2) rather than a gen-
eralized one (with ¢ = 0.5): Accuracy 1 is significantly im-
proved. However, this change comes at the cost of Oracle ac-
curacy and Accuracy 2, and thus leads to lower results overall
(even with Accuracy 1) when the octave decider is included.
The second-worst results come from disabling the pulse trains.
We can see moderate losses from disabling the OSS low-pass
filter, the beat period detection’s harmonic enhancement, or the
accumulator’s use of Gaussians. If no portions of the algorithm
are strictly disabled, the algorithm is fairly resistant to tweaking
parameters.

To evaluate the processing time, we benchmarked? the algo-
rithm on the BALLROOM dataset. Each modified version of the
algorithm was run five times and summarized with their mean
and standard deviation. Changing the FFT window length had a
significant effect on the processing time, with the time for each
30-second song ranging from 0.33 seconds to 1.43 seconds. By
contrast, the other modifications had almost no effect, ranging
from 0.77 seconds to 0.79 seconds per song. This suggests that
altering the onset strength signal is the best way to improve the
efficiency of the algorithm.

V. REPRODUCIBLE RESEARCH

We provide three open-source implementations of the pro-
posed algorithm. The first is in C++ and is part of the Marsyas
audio processing framework [44]. The second is in Python and is

8The system used for the benchmarks was an Intel(R) Xeon(R) E5520 at
2.27 GHz, running MacOS X 10.7.5.
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a less efficient stand-alone reference implementation. The third
is an Octave/MATLAB implementation, also stand-alone.

We created multiple implementations to test the repro-
ducibility of the description of the algorithm, as this is an
increasingly important facet of research [34]. In addition to
providing easy comparison for future algorithms, these imple-
mentations could serve as a baseline for future tempo or beat
tracking research. All versions are available in the Marsyas
source repository’, with the final version having the git tag
tempo — stem. All evaluation scripts and ground-truth data,
pointers to the audio collections used, and the two standalone
implementations are included in a webpage!0. Interested readers
are encouraged to contact the authors for details if they have
any questions regarding these resources.

VI. CONCLUSIONS

We have presented a streamlined, effective algorithm for
tempo estimation from audio signals. It exploits self-similarity
and pulse regularity using ideas from previous work that have
been reduced to their bare essentials. Each step is relatively
simple and there are only a few parameters to adjust. A thor-
ough experimental evaluation with the largest number of data
sets and music track to date shows that our proposed method
has excellent performance that is statistically similar to the top
performing algorithms, including two commercial systems. We
hope that providing a detailed description of the steps, open
source implementations, and the scripts used for the evaluation
experiments will assist reproducibility and stimulate more
research in rhythmic analysis.

In the future we plan to extent the proposed tempo estima-
tion method for beat tracking. In the current implementation
the “same” beat is estimated by different overlapping windows.
These potentially different estimates could be combined to form
a more reliable estimate and adjusted in time to coincide with
onsets, possibly at the expense of regularity, to deal in order
to deal with changing tempo at the beat level. The challenging
SMC dataset could be a good starting point for this purpose.
Higher-level rhythmic analysis such as detecting bars/down-
beats could also be performed to assist with beat tracking. Cur-
rently the proposed method works for music in which the tempo
is constant or near constant. There are two interesting direc-
tions for future work we plan to explore: 1) we plan to ex-
tend the method for the case where the tempo varies during the
piece, 2) a machine learning approach can be used to automat-
ically determine whether the near constant tempo assumption
is valid or not and adjust the algorithm accordingly. Frequently
music (especially in popular genres) exhibits strong repetition of
rhythmic patterns. These patterns could be detected and used as
descriptors for various music information retrieval tasks. In ad-
dition, they can potentially be used to improve tempo and beat
tracking estimates in a genre-specific way. Finally we plan to
consider the adaptive “radio” scenario in which the boundaries
between tracks are not known and the tempo estimation and
beat tracking must “adapt” to the new incoming data as tracks

Shttps://github.com/marsyas/marsyas
10http://opihi.cs.uvic.ca/tempo/

change. This would probably require some soft decay of the ac-
cumulation part and a slightly different strategy for tempo esti-
mation evaluation.
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Streamlined Tempo Estimation Based on
Autocorrelation and Cross-correlation With Pulses

Graham Percival, Member, IEEE, and George Tzanetakis, Senior Member, IEEE

Abstract—Algorithms for musical tempo estimation have be-
come increasingly complicated in recent years. These algorithms
typically utilize two fundamental properties of musical rhythm:
some features of the audio signal are self-similar at periods related
to the underlying rhythmic structure, and rhythmic events tend
to be spaced regularly in time. We present a streamlined tempo
estimation method (stem) that distills ideas from previous work
by reducing the number of steps, parameters, and modeling as-
sumptions while retaining good accuracy. This method is designed
for music with a constant or near-constant tempo. The proposed
method either outperforms or has similar performance to many
existing state-of-the-art algorithms. Self-similarity is captured
through autocorrelation of the onset strength signal (OSS), and
time regularity is captured through cross-correlation of the OSS
with regularly spaced pulses. Our findings are supported by the
most comprehensive evaluation of tempo estimation algorithms
to date in terms of the number of datasets and tracks considered.
During the process we have also corrected ground truth annota-
tions for the datasets considered. All the data, the annotations,
the evaluation code, and three different implementations (C++,
Python, MATLAB) of the proposed algorithm are provided in
order to support reproducibility.

Index Terms—Audio signal processing, music information re-
trieval, rhythm analysis, tempo induction.

I. INTRODUCTION

EMPO estimation is a fundamental problem in music

information retrieval (MIR), vital for applications such
as music similarity and recommendation, semi-automatic audio
editing, automatic accompaniment, polyphonic transcription,
beat-synchronous audio effects, and computer assisted DJ
systems. Typically, automatic analysis of rhythm consists of
two main tasks: tempo estimation and beat tracking. The goal
of tempo estimation is to automatically determine the rate of
musical beats in time. Beats can be defined as the locations in
time where a human would “tap” their foot while listening to
a piece of music. Beat tracking is the task of determining the
locations of these beats in time, and is considerably harder in
music in which the tempo varies over time [1]. Both of these

Manuscript received July 28, 2013; revised March 04, 2014; accepted August
10, 2014. Date of publication August 18, 2014; date of current version nulldate.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Bozena Kostek.

G. Percival is with the National Institute of Advanced Industrial Science and
Technology, Tsukuba 305-8568, Japan (e-mail: graham@percival-music.ca).

G. Tzanetakis is with the Department of Computer Science, University of
Victoria, Victoria, BC V8W3P6, Canada (e-mail: gtzan@cs.uvic.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2014.2348916

topics have received considerable attention and there is a large
body of published literature exploring various approaches to
solving them automatically.

In this work, we focus solely on the task of tempo estima-
tion or tempo induction (another term frequently used for the
same task). Algorithms for tempo estimation have become, over
time, increasingly more complicated. They frequently contain
multiple stages, each with many parameters that need to be ad-
justed. This complexity makes them less efficient, harder to op-
timize due to the large number of parameters, and difficult to
replicate. Our goal has been to streamline the tempo estimation
process by reducing the number of steps and parameters without
affecting the accuracy of the algorithm. An additional motiva-
tion is that tempo estimation is a task that most human listeners
(even without musical training) can do reasonably well. There-
fore, it should be possible to model this task without requiring
complex models of formal musical knowledge, although mim-
icking the basic human perception remains a challenging task.

One challenge particular to tempo estimation is that, although
most untrained listeners can track the overall speed of most
music, their estimates can often differ by an integer multiple.
For example, a march (a song with a very clear and steady beat,
specifically designed to permit non-musically-trained soldiers
to walk at the same speed) could be perceived as “one two three
four, one two three four” or “one and two and, one and two
and.” Another famous example is a waltz (a formal European
dance, again specifically designed to permit easy perception of
the beats), which could be perceived as “one two three, one two
three” or “one and a, one and a.” If the words in all the above
examples are said at the same rate (say, 150 words per minute)
but the perception of a “beat” is restricted to the numbers, then
the potential Beats Per Minute (BPM) of the march are 150 and
75, while the potential tempos of the waltz are 150 and 50. In
many cases, it is not meaningful to say that either one of those
pairs of numbers are incorrect.

After an early period in which systems were evaluated indi-
vidually on small private datasets, since 2004 there have been
three public datasets that have been frequently used to compare
different approaches. We have conducted a thorough experi-
mental investigation of multiple tempo estimation algorithms
which uses two additional datasets to the classic three datasets.
We show that our proposed streamlined tempo estimation
method (stem) demonstrates state-of-the-art performance that
is statistically very close to the best performing systems we
evaluated. The code of our algorithm, as well as the scripts used
for the experimental comparison of all the different systems
considered, is available as open source software in three dif-
ferent implementations (C++, Python, MATLAB). Moreover,

2329-9290 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

all the datasets used and associated ground truth are publicly
available. By supporting reproducible digital signal processing
research we hope to stimulate further experimentation in tempo
estimation and automatic rhythmic analysis in general.

A. Related work

The origins of work in tempo estimation and beat tracking
can be traced to research in music psychology. There are some
indications that humans solve these two problems separately. In
the early (1973) two-level timing model proposed by [2], sep-
arate mechanisms for estimating the period (tempo) and phase
(beat locations) are proposed by examining data from tapping
a Morse key. A recent overview article of the tapping literature
[3] summarizes the evidence for a two-process model that con-
sists of a slow process which measures the underlying tempo
and a fast synchronization process which measures the phase.

Work in automatic beat tracking started in the 1980s but
mostly utilized symbolic input, frequently in the form of
MIDI (Musical Instrument Digital Interface) signals. In the
1990s the first papers investigating beat tracking of audio
signals appeared. A real-time beat tracking system based on
a multiple agent architecture was proposed in 1994 [4]. Each
agent corresponded to a particular tempo/phase hypothesis and
was scored based on how it was supported by the analyzed
audio data consisting of a discrete set of automatically detected
pulses corresponding to onsets. Another influential early paper
described a method that utilized comb filters to extract beats
from polyphonic music [5]. It also introduced the idea of
continuous processing of the audio signals rather than discrete
onset locations.

There has been an increasing amount of interest in tempo es-
timation for audio signals in recent years. A large experimental
comparison of various tempo estimation algorithms was con-
ducted in 2004 as part of the International Conference on Music
Information Retrieval (ISMIR) and presented in a journal ar-
ticle [6]. A more recent experimental comparison of 23 algo-
rithms was performed in 2011, giving a more in-depth statistical
comparison between the methods considered [7]. The original
2004 study established the evaluation methodology and data
sets that have been used in the majority of subsequent work,
including ours. There has been a growing concern that algo-
rithms might be over-fitting these data sets created in 2004. In
our work we have expanded both the number of datasets and
music tracks in order to make the evaluation results more reli-
able. Although there is considerable variety in the details of dif-
ferent algorithms, there are some common stages such as onset
detection and period analysis that are shared by most of them.
An overview of different algorithms and the type of rhythmic
models and processing steps they employ can be found in [8].

A fundamental concept in tempo estimation algorithm is
the notion of onsets. Onsets are the locations in time where
significant rthythmic events such as pitched notes or transient
percussion events take place. Some of the previous algorithms
use hard onset decisions, i.e. their input is a discrete list of
onset locations over time [4], [9], [10], [11]. An alternative
is to use a more continuous representation in which a “soft”
onset strength value is provided at a regular time locations.
The resulting signal is frequently called the onset strength

signal (OSS) [12], [13], [14]. The next step is to determine the
dominant periods based on the extracted onset information.
The previous approaches for period detection fall into some
common groups. Histogramming methods are based on com-
puting inter-onset intervals (IOI) from discrete lists of onset
locations, that are then accumulated in a histogram whose bins
correspond to the periods of interest [11]. In autocorrelation
methods [15], [16], [17] the onset strength is analyzed period-
ically typically at intervals of several seconds by computing
the autocorrelation function of each interval. The peaks of
the autocorrelation function should correspond to the period
length of the different metrical levels of the underlying rhythm.
Oscillating filter approaches use the input data to either adapt
a non-linear oscillator whose frequency represents the tempo
and whose phase represents the beat locations [18] or a bank of
resonating filters at fixed periods [5], [19]. In all these cases,
the typical output is a representation called a beat histogram or
beat spectrum which captures the amount of confidence or beat
strength [16] for each candidate tempo for the data that has
been analyzed. A generalization of this representation is used in
multiple agent approaches [4], [20], [14], [21]. Multiple tempo
and pulse hypotheses are considered in parallel and tracked
over time. In some cases multiple onset detection function or
even different beat trackers can be utilized simultaneously.
Each “agent” keeps track of its score and at the end the “agent”
with the highest score is selected as the estimated tempo. In
order to track changes in tempo and beat locations over time,
a common approach is to utilize dynamic programming [22].
Finally, other approaches [12], [23], [19] assume that there
is a probabilistic model that characterizes the generation of
rhythmic events. The goal of such algorithms is to estimate the
parameters of this generative process, typically using standard
estimation procedures such as Kalman filtering, Markov Chain
Monte Carlo, or sequential Monte Carlo (particle filtering)
algorithms [24].

Finally, we highlight examples of previous work that have
been influential in the design of stem. Our work is similar in
spirit to the computationally efficient multipitch estimation
model proposed in [25]. In that work, the authors showed
how previous, more complicated, algorithms for multiple
pitch detection could be simplified, improving both speed
of computation and complexity without affecting accuracy.
An influential idea has been the use of cross-correlation of
“ideal” pulse sequences corresponding to a particular tempo
and downbeat locations with the onset strength signal [26]. The
use of variance to “score” the different period candidates when
cross-correlating with pulse sequences with different phases
was inspired by the phase autocorrelation matrix approach
proposed by [27]. One of the issues facing tempo estimation is
that algorithms frequently make octave errors, i.e. they estimate
the tempo to be either half or twice (or a third or thrice) the
actual ground truth tempo [28], [29]. This ambiguity is also
common with human tapping. Our work only deals with halved
or doubled tempos. Recently, machine learning techniques
for estimating tempo classes (“slow”, “medium”, “fast”) [30],
[31] have been proposed and used for reducing octave errors,
for example by using the estimated class to create a prior to
constrain the tempo estimation process [32]. Our goal has been
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to take these concepts, simplify each step, and combine them
in an easily-reproducible algorithm.

B. Improvements over previous paper

An earlier version of the algorithm described in this article
was presented at the International Conference on Audio, Speech
and Signal Processing (ICASSP) in 2013 [33]. In this work we
have further simplified the processing steps of the method. More
specifically, we no longer utilize Beat Histograms and do not
retain a separate tempo candidate from the Beat Histogram. In-
stead, all cumulative processing as well as the detection of the
tempo candidate are done directly in the generalized autocorre-
lation lag domain. In addition, the description of the algorithm
has been expanded with more figures, text, and equations im-
proving understanding. We also provide updated experimental
results based on corrected ground truth and implement a more
sophisticated machine learning scheme to determine whether
the tempo should be doubled. Finally, we provide three different
open source implementations (C++, Python and MATLAB) that
have all been tested and provide identical results. Together with
the datasets and associated ground truth, these implementations
support reproducibility which is increasingly becoming impor-
tant in signal processing research [34].

II. ALGORITHM

The proposed approach follows a relatively common archi-
tecture with the explicit design goal to simplify each step as
much as possible without losing accuracy. There are three main
stages to the algorithm, as shown in Fig. 1. The initial audio
input has a sampling rate of F; 4 = 44100 Hz.
1) Generate Onset Strength Signal (OSS)
The time-domain audio signal is converted into a signal
which (ideally) indicates where humans would perceive
onsets to occur. The OSS is also at a lower sampling rate;
F,o0 = 344.5 Hz.

2) Beat Period Detection
The OSS signal is split into overlapping windows roughly
5.9 seconds long, and each segment is analyzed for the
tempo. After examining the range of annotated tempos in
the datasets, we chose a minimum tempo of 50 BPM and
maximum tempo of 210 BPM. The output of this step is
a single tempo estimate, expressed as a lag of samples (of
Fs0). The sampling rate of these tempo estimates is sz =
2.7 Hz.

3) Accumulator and overall estimate
The tempo estimates are accumulated, and at the end of the
track an overall estimate (in BPM) is derived from the ac-
cumulated results. A heuristic is used to determine whether
this estimate is correct or whether it should be halved or
doubled.

In contrast to many existing tempo estimation and beat
tracking algorithms, we do not utilize multiple frequency bands
[19], perform peak picking during the onset strength signal
calculation [9], employ dynamic programming [22], utilize
complex probabilistic modeling based on musical structure
[19], [23], and our use of machine learning is simple and

Audio input (F;4 = 44100 Hz)

o
v

Generate OSS

(window 1024, hop 128)
(window 23.2 ms, hop 2.9 ms)

0SS (Fyo = 344.5 Hz)

MMMMMM ... (cont)
v

Beat Period Detection
(window 2048, hop 128)

(window 5.9 s, hop 0.37 s)
l Tempo lag (Fsp = 2.7 Hz)

| lag 178 samples, ... (cont) |

Accumulator and
overall estimate

(1 track)
Final BPM (1 per track)
116 BPM

Fig. 1. Dataflow diagram of the tempo estimation algorithm. Left: processing
blocks. Right: type of data, and an example of the data.

limited. The following sections describe each of the main
processing steps in detail.

A. Generate Onset Strength Signal (OSS)

The first step is to compute a time-domain Onset Strength
Signal (OSS) from the audio input signal. The final OSS is at
a lower sampling rate than the audio input, and should have
high values at the locations where there are rhythmically salient
events that are termed “onsets.” Beats tend to be located near
onsets and can be viewed as a semi-regular subset of the onsets.

A large number of onset detection functions have been pro-
posed in the literature [35], [10]. In most cases, they measure
some form of change in either energy or spectral content. In
some cases, multiple onset detection functions are computed
and are either treated separately for period detection or com-
bined to a single OSS [5], [17]. After experimentation with sev-
eral choices we settled on a simple onset detection function that
worked better than the alternatives and can be applied directly
to the log-magnitude spectrum. The dataflow diagram and an
example are shown in Fig. 2.

1) Overlap: We begin by segmenting the audio (originally
at 44100 Hz sampling rate) into overlapping frames of 1024
samples with a hop size of 128 samples. This produces a set
of frames with a sampling rate of =~ 344.5 Hz.

2) Log Power Spectrum: Each frame is multiplied by a Ham-
ming window function, then we compute the magnitude spec-
trum with the Discrete Fourier Transform. We define | X (k, n)|
as the magnitude spectrum at frame 7 and frequency bin k. We
further define Lp as the log-power magnitude spectrum,

Lp(k,n) =1n(1 +1000.0 - | X (k,n)|) 1)

3) Flux: We calculate the spectral flux by summing the log-
magnitudes of the frequency bins [8], [17] that have a positive
change in log-magnitude over time. /N is the number of FFT
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Fig. 2. Dataflow diagram for OSS calculation. Left: processing blocks. Right:
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bins representing positive frequencies, N = 513. The DC-offset
FFT bin 0 is omitted from the spectral flux calculation.

Ipp(k,n) is an indicator function selecting the frequency
bins in which there is a positive change in log-magnitude,

N-1

Z(Lp(k,n) — Lp(k,n—1))- Ipp(k,n)
k=1

Iop(hn) = {0 X (K, n)| — [ X (k,n — 1) <0

Eum (n) =

1 otherwise 2)

This flux calculation reduces the dataflow from a series of
frames (of 257 samples) at 344.5 Hz to a 1-dimensional signal
at 344.5 Hz.

4) Low-pass filter: The signal is further low-pass filtered with
a 14th-order FIR filter with a cutoff of 7 Hz, designed with the
Hamming window method. 7 Hz was used as it is twice the
maximum BPM value of 210 BPM (or 3.5 Hz).

The output of this filter is our Onset Strength Signal. Subse-
quent stages of our algorithm (Section II-B and Section II-C)
use this to estimate the tempo of the audio, but the OSS could
also serve as the initial step to an onset detection or beat tracking
algorithm.

B. Beat Period Detection

Having generated the OSS, we now estimate the tempo for
each portion of audio. In particular, we examine frames of the
OSS which are 2048 samples long. This corresponds to approx-
imately 6 seconds of audio (gf:% /2 5.94 s), similarly to [17].
The hop size of the Onset Strength Signal is 128 OSS sam-
ples corresponding to approximately 0.37 seconds. Each anal-
ysis frame of the OSS is denoted by m, with a total of M frames.
Therefore, the algorithm requires 5.9 seconds for an initial es-
timate of the tempo and updates this tempo estimate approxi-
mately once every 0.37 seconds.

The dataflow diagram is shown in Fig. 3.

1) Overlap: We begin by segmenting the OSS (originally at
344.5 Hz sampling rate) into overlapping frames of 2048 sam-
ples with a hop size of 128 samples. This produces a set of
frames with a sampling rate of = 2.7 Hz.

2) Generalized Autocorrelation: Autocorrelation is applied
to the OSS to determine the different time lags in which the

v
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v

Fig. 3. Dataflow diagram for beat periods detection. The autocorrelation plots
(2nd and 3rd down) only show the range of interest (98 to 414 samples).

OSS is self similar. The lag (x-axis) of the peaks in the autocor-
relation function will correspond to the dominant periods of the
signal which in many cases will be harmonically related (integer
multiples or ratios) to the actual underlying tempo. We utilize
the “generalized autocorrelation” function [25] whose compu-
tation consists of zero-padding to double the length, computing
the discrete Fourier transform of the signal, magnitude compres-
sion of the spectrum, followed by an inverse discrete Fourier
transform:

Ap(t) = DFTY(|DFT(0S5(m))[) 3)
The parameter ¢ controls the frequency domain compression
and ¢ is the lag in OSS samples. Normal autocorrelation has a
value of ¢ equal to 2 but it can be advantageous to use a smaller
value [25]. The peaks of the autocorrelation function tend to get
narrower with smaller values of ¢, resulting in better lag resolu-
tion. At the same time, for low values of ¢ the performance dete-
riorates as there is more noise sensitivity. We have empirically
found ¢ = 0.5 to be a good compromise between lag-domain
resolution and sensitivity to noise.

Our algorithm uses autocorrelation lag values for the re-
mainder of the processing, but some readers may feel more
comfortable dealing with BPM as that is how musicians discuss
tempo. The BPM can be calculated from the autocorrelation
lag:

ppy = 90 Fso 'tFSO 4)

3) Enhance Harmonics: The autocorrelation A, has peaks
corresponding to integer multiples of the underlying tempo as
well as other dominant periods related to rhythmic subdivisions.
To boost harmonically related peaks, two time-stretched version
of the A,, (by factors of 2 and 4) are added to the original re-
sulting in an enhanced autocorrelation EFAC":

EACu() = Ap() + Am(2-1) + An(d-1)  (5)
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Fig. 4. Pulse trains used for evaluating the tempo candidates.
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Fig. 5. Example of evaluating pulse trains. Top: one particular OSS frame.
Middle: pulse train for a tempo lag of 178 samples (116 BPM) with @ = 100.
Bottom: cross-correlation between the OSS and all ¢ = {0,1,2...177}. Note
that the hop-size of the beat period detection is 128 samples, so even though this
particular frame will not involve the last portion of the OSS frame, that data will
be used in a later frame.

4) Pick peaks: The top 10 peaks in the enhanced autocorre-
lation EAC' are extracted; these are the tempo candidates for
the scoring. Only peaks between the minimum and maximum
autocorrelation lag are considered,

. | 60-Foo |
win lag = {mJ = ©
_ 60 - Fo Yy
max lag = {mJ & )

5) Evaluate pulse trains: Once the candidate tempos from the
E AC have been identified for a 2048-sample frame of the OSS,
the candidates are evaluated by correlating the OSS signal with
an ideal expected pulse train that is shifted in time by different
amounts. There are two inputs to the process: a frame of the OSS
signal (before the generalized autocorrelation is calculated), and
the 10 tempo candidates extracted from the EAC. As shown
by [26], this corresponds to a least-square approach of scoring
candidate tempos and downbeat locations assuming a constant
tempo during the analyzed 6 seconds. Our tempo algorithm is
not concerned with downbeats, but we adopted it since this ap-
proach provided a useful way to evaluate candidate tempos. The
cross-correlation with an impulse train can be efficiently per-
formed by only multiplying the non-zero values, significantly
reducing the cost of computation. Given a candidate tempo lag
in OSS samples P and a candidate phase location ¢ (the time
instance a beat occurs), we create three sequences of pulses with
v =1152:

Ipgw=d+vBP B=0,1,23 (8)

Each sequence should be understood as a beat pattern corre-
sponding to multiples of the candidate P’; musically speaking,
these capture common integer relationships based on meter.
These three sequences are summed to form a single sequence,
where Ip 41 has weight 1.0, and Ipg,15 and Ipg42 have
weight 0.5. The combined sequence is called Ip 4. This process
is shown in shown in Fig. 4.

The Ip,4 impulse train is cross-correlated with the OSS frame
m, with ¢ = {0,1,2...(P — 1)}. This is shown in Fig. 5.
If an index of the impulse train falls outside the OSS frame
(for example, at 60 BPM the ¢ + 2k P index can extend as far
as 8 seconds), that pulse is omitted from the cross-correlation.
This adds a slight penalty to the maximum value of this cross-
correlation for tempos less than 71 BPM.

When scoring a particular tempo candidate P, the resulting
impulse signal is cross-correlated with the OSS for all possible
phases ¢. We define pp (¢, m),

pp(gb,m):OSSm*Ip7¢, ¢:0,1,...(P—1) )

as the vector of cross-correlation values for all phases ¢ and
candidate tempo P in OSS frame 1. The tempo candidates are
then scored based on this vector. Two scoring functions are cal-
culated: SC,, the highest cross-correlation value over all pos-
sible ¢, and SC,, the variance of cross-correlation values over
all possible ¢, as suggested by [27]:

SCU(P7 m) - Vgr(pp(¢7 m))

SCL(P,m) = max(pp(d,m) (10)
The rationale behind using the variance as a scoring criterion
is that if the onset signal is relatively flat and there are no pro-
nounced rhythmic events, there will be small variance in the
cross-correlation values between the different “phases.” How-
ever if there are pronounced rhythmic onsets the variance will
be high. These two score vectors are normalized so that they
sum to 1 and are added to yield the final score for each tempo
candidate P in frame m:

_ SC.(P,m)
SC(P,m) = S~ SCL(P,m)

SC,(P,m)
2. SC,(P,m)

Q)

The highest scoring tempo lag candidate L., is selected for

the frame m:
L,, = argmax SC(P,m) (12)

P

The algorithm accumulates these estimates and makes a
single overall estimate of the entire track (Section II-C), but
the OSS and period detection method could be used to pro-
vide causal tempo estimates which could trigger events from
recorded audio. If tempo updates are required more often than
every 0.37 seconds, the hopsize could be reduced accordingly.
However, these tempo estimates are not sufficient for beat
tracking, as they make no attempt to track tempo estimates (and
the offset for the pulse trains) from one frame to the next; in

addition, our algorithm is more accurate when these estimates
are accumulated for an entire audio track.
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Fig. 6. Dataflow diagram for accumulation and overall estimate.

C. Accumulation and overall estimate

The final step of the algorithm is to accumulate all tempo
lag estimates L,, from each frame of the OSS. The dataflow
diagram is shown in Fig. 6.

1) Convert to Gaussian: In most music, the tempo fluctuates
slightly throughout the music. Even when the tempo is steady,
the OSS and beat period detection calculations can result in a
slightly different estimate L,,,. To accommodate these fluctua-
tions, instead of accumulating a single value for L,,, we create
a Gaussian curve G, with p = L, and ¢ = 10:

1

o2

G, = o (z—n)? /20 (13)

Using a fixed o for different lag estimates results in a grad-
uated range of tempo estimates in the BPM domain. Given a
single lag estimate L, the Gaussian is slightly biased towards
higher tempos. In addition, slower tempos have a narrower
range. To illustrate, we will give the range of BPMs covered by
a tempo candidate lag 10 samples. A Gaussian curve for an
estimate of 60 BPM will cover -2.8% to +3.0%; an estimate of
120 BPM will cover -5.5% to +6.2%); and an estimate of 180
BPM will cover -8.0% to +9.5%.

2) Accumulator (sum): The G, for each frame is accumu-
lated in a Tempo Estimate Accumulator C'. C' is a vector long
enough to hold all possible autocorrelation lags, and is initialize
to be 0,

Cop=Chi1 + Gy (14)

3) Pick peak: Atthe end of the audio track, we pick the index
with the highest value in our tempo estimate accumulator C', and
convert it to a BPM value to be our overall tempo lag estimate L.

4) Octave decider: Converting the tempo lag estimate di-
rectly into a tempo 7 = &% F =+ in BPM produces many es-
timates which are half the ground truth and some which are
double the ground-truth. This algorithm (with no tempo dou-
bling or halving) shall be called stem — base as it serves as
a baseline algorithm. In particular, out of 4011 files, 2100 are
correct, while 1310 are half the ground-truth BPM and 208 are

TABLE 1
CONFUSION MATRIX OF STEM-SVM3 TRAINING.
0.5 1.0 2.0 |
74 134 0 0.5
30 1853 305 1.0
0 408 902 | 2.0

double the ground-truth. If we could accurately predict whether
the tempo estimate 7' should be multiplied by 1, or 2, the accu-
racy would jump from 52% to 85%; if we could decide between
1, 2, or 0.5, the accuracy would jump to 90.2%.

The simplest possible improvement would be to set a
threshold so that any tempo below it would be doubled. This
algorithm (stem — heur) should not be understood as a sug-
gestion for practical use; rather, we present this method as
a way of investigating the idea of automatic doubling. The
doubling threshold of 71.9 BPM was determined using simple
machine learning (a decision tree) and an oracle approach
based on the ground truth data for training. The “feature” is the
tempo candidate and the classification decision is whether to
double or not. This can be viewed as an extremely simplified
version of the more complex machine learning approaches that
have been proposed in the literature [32], [36], [31].

A somewhat more advanced algorithm (stem — svm3) uses
a support vector machine (SVM) with a linear kernel to de-
cide whether to output 7', 27", or 0.57". We use 3 features ex-
tracted from the tempo estimate accumulator C'. The first fea-
ture is the sum of values below the overall tempo lag estimate
L; the second is the sum of values close to 0.5L. In both cases,
we consider 10 samples to be the threshold for the “area of in-

terest.” The third feature is simply the candidate lag L itself.
L—10 0.5L+10
F= % ), B Z CG), F=L (15
i=0 5L—10

To train stem — heur, we selected files for which dou-
bling or not would produce the correct annotation. To train
stem — svm3, we also selected files for which halving would
produce the correct annotation. Of the 4011 files in total, an or-
acle approach of comparing the candidate 7" to the ground-truth
data revealed that 2045 files should not be doubled, 1344 should
be doubled, and 622 annotations were incorrect regardless of
doubling. We omitted the 622 incorrect answers and used the
remaining 3369 files for training. stem — heur was trained
with Weka’s! ConjunctiveRule, a simple decision rule; the
10-fold cross-validation accuracy was 78.0%. stem — svm3
was trained with SMO, the traditional method of training SVM
machines; the 10-fold cross-validation accuracy was 76.3%,
with the confusion matrix shown in Table 1.

III. EVALUATION

The proposed algorithm (stem) was tested against 7 other
tempo estimation algorithms on 6 datasets of 44100 Hz, 16-bit
audio files, comprising 4011 audio tracks in total. As with other
tempo evaluations [6], [7], two accuracy measures are used: Ac-
curacy 1 is the percent of estimates which are within 4% BPM

Thttp://www.cs.waikato.ac.nz/ml/weka/
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Fig. 7. Example of incorrect ground truth in BALLROOM dataset. The file
ChaChaCha/Media — 103416.wav was annotated as being 124 BPM, but it is
actually 116 BPM.

of the ground-truth tempo, and Accuracy 2 is the percent of esti-
mates which are within 4% of a multiple of %, %, 1,2, or 3 times
the ground-truth tempo.

Following the measure of statistical significance used in [37],
[7], we tested the accuracy of each algorithm against our accu-
racy with McNemar’s test, using a significance value of p <
0.01. The null hypothesis of this test is that if a pair of algo-
rithms produces one correct and one incorrect answer for a cer-
tain audio track, there is an equal probability of each algorithm
giving the correct answer. Given b = the number of instances
where algorithm A is correct while algorithm B is incorrect, and
¢ = the number of instances where B is correct and A is incor-
rect, the test statistic is =<)" This statistic is compared to the

b+c
x? distribution with 1 degree of freedom.

A. Datasets and Ground Truth

Shared datasets are vital for the comparison of algorithms be-
tween different researchers, and the tempo induction commu-
nity has been accumulating tempo-annotated audio collections
starting with the MIREX tempo induction competition in 2004
[6]. However, in addition to having shared datasets, it is impor-
tant that these datasets contain correctly-annotated ground truth.
Testing algorithms on flawed data can produce inaccurate esti-
mates of the algorithms’ accuracy in the best case, and in the
worst case it may lead researchers to tweak parameters sub-op-
timally to produce a higher accuracy on the flawed data. Links
to all of the datasets are available at our webpage to facilitate
reproducible research (Section V).

We found that three of the five datasets used in tempo in-
duction experiments contained 4%—10% incorrect annotations,
with the correct ground truth varying up to 30% away from the
annotated ground truth. One example is shown in Fig. 7. Tempo
collections which contain corrected data from previously pub-
lished papers are indicated with a star *.

To investigate the data annotations, we examined a subset of
“questionable” tempo annotations. We defined “questionable”
as “files for which two of the top three algorithms did not sat-
isfy Accuracy 2.” This is very similar to the selective sampling
method used in [38], [39], wherein the difficulty of beat tracking
audio tracks is calculated by examining the mean mutual agree-
ment between a “committee” of beat trackers. Previous experi-
ments [33] with the original tempo annotations showed that the
top three algorithms other than our own (gkiokas, klapuri,
and zplane; see Section III-B for information about these al-
gorithms) had 91.0%, 89.3%, and 87.1% accuracy 2. Out of the

3794 annotations, 368 were “questionable” and examined man-
ually, while the remaining 3426 were accepted without any fur-
ther action. The remaining files were examined manually by an
experienced musician with a Masters degree. If there was an ob-
vious tempo (generally given by drums) which differed from the
annotated tempo, the ground truth was altered. If there were two
plausible tempos (such as music which could be interpreted as
i or g meter), we did not alter the ground truth.

ACM MIRUM* (1410 tracks) was originally gathered with
crowd-sourced annotations [40], but was further processed by
[36] to remove songs for which the tempo annotations differed
significantly. This collection primarily consists of popular songs
from the pop, rock, and country genres. Unfortunately, the data-
base from which these songs were gathered contained multiple
versions of the same song and [40] only recorded the author
and title, not the specific version. [36] provided? digital IDs for
30-second excerpts in the 7Digital? collection. We used those
IDs to download the mp3 files from 7Digital. Although many
versions of the same song may have a similar tempo, we found
some examples where they differed by 30%. While creating the
ACM MIRUM database, the author noted that “When the API
[30-second audio excerpt retrieval] returned several items, only
the first one was used. Due to this process, part of the audio
tracks we used may not correspond to the ones used for the
experiment of [40]. We estimate this part at 9%.” [36, p. 48].
This estimate was quite accurate; out of the 155 automatically-
flagged “questionable” files, we found that 135 files (9.6%) con-
tained an obvious tempo which differed significantly from the
annotated tempo.

BALLROOM* (698 tracks) arose from the 2004 competition
conducted in [6]. This collection consist of music suitable for
ballroom dancing; as such, they had very stable tempos with
strong beats. 48 annotations were flagged as “questionable” and
were examined manually; of those, 32 annotations (4.6%) were
corrected.

GTZAN GENRES* (999 tracks) was originally created for
genres classification [15], but we added tempo annotations
to these songs. The collection includes 10 genres with 100
tracks per genre, however as noted in [41], one of the files
suffered corruption to 80% of the audio. We omitted that file
(reggae.00086.wav) from this tempo collection. 84 other files
were flagged as “questionable”; we corrected the tempo of 24
files (2.4%).

HAINSWORTH (222 tracks) came from [12]. Audio comes
from popular songs, classical music (both instrumental and
choral), and world music. 36 files were flagged as “question-
able”, but manual examination did not show any compelling
alternate tempos, so no alterations were made. A longer discus-
sion about this dataset is given in Section I1I-C.

ISMIR04 SONG (465 tracks) arose from the 2004 competi-
tion conducted in [6]. 45 files were flagged as “questionable”,
but there were no compelling alternate tempos. A longer discus-
sion about this dataset is given in Section I1I-C.

SMC_MIRUM (217 tracks) is a dataset for beat tracking
which was created by [38], [39] by taking audio which was

Zhttp://recherche.ircam.fr/anasyn/peeters/pub/2012_ ACMMIRUM/
3http://www.7digital.com/
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TABLE 11
TEMPO ACCURACY, RESULTS GIVEN IN %.

Accuracy 1 results

stem algorithms
files svm3 heur Dbase | echonest gkiokas =zplane klapuri ibt gm_vamp scheirer

ACM MIRUM* 1410 733 70.6 55.6— 72.1 72.7 70.1 68.9 63.0— 63.9— 56.5-
BALLROOM* 698 65.6 66.3 40.8- 89.8+ 63.2 66.9 64.9 64.3 66.9 58.2-
GTZAN GENRES* 999 78.3 74.6 63.4- 72.5- 71.7- 68.9— 70.5- 61.0- 58.8— 57.7-
HAINSWORTH 222 69.8 71.6 41.0- 72.1 64.4 69.8 71.6 72.5 68.0 53.2-
ISMIR04_SONGS 465 61.1 58.7 57.0 63.2 57.0 56.3 58.1 46.7- 43.0- 46.0-
SMC_MIRUM 217 27.6 19.4 19.4 18.9 35.0 18.4 18.0 17.5 12.4- 13.8-
Dataset average 62.6 60.2 46.2 64.8 60.7 58.4 58.6 54.2 52.2 47.6

Total average 4011 69.1 66.7 52.4- 71.4 66.5 64.8— 64.7- 58.9- 58.2- 53.4-

Accuracy 2 results
stem algorithms
files svm3 heur Dbase echonest gkiokas zplane klapuri ibt qm_vamp scheirer

ACM MIRUM* 1410 97.1 97.3 96.8 94.9 98.0 93.8 96.9 93.2 93.0 82.3-
BALLROOM* 698 95.0 92.8 93.1 96.3 98.0 94.8 92.8 90.3 90.8 81.2-
GTZAN GENRES* 999 94.7 95.1 95.0 91.6 93.9 89.1 92.5 87.0- 87.7- 77.6—
HAINSWORTH 222 86.9 86.9 86.9 84.2 84.7 82.4 84.2 82.0 71.5 69.4-
ISMIR04_SONGS 465 86.7 87.3 88.0 86.0 91.0 82.6 89.5 76.6— 79.8 72.0-
SMC_MIRUM 217 45.6 46.5 47.0 34.1 51.6 31.8- 41.9 36.9 30.9- 25.8-
Dataset average 84.3 84.3 84.5 81.2 86.2 79.1 83.0 77.6 76.6 68.0

Total average 4011 91.6 91.5 91.4 89.4 92.9 87.5- 90.6 85.5- 85.6— 76.0-

particularly difficult for existing beat tracking algorithms.
Since this dataset contains ground-truth beat times, we took the
median inter-beat time as the ground-truth tempo.

B. Other Algorithms

We briefly describe the algorithms and provide pointers to
more detailed descriptions. gkickas [42] has the best Accu-
racy 2 performance. It is significantly more complicated than
our proposed approach as it uses a constant-Q transform, har-
monic/percussive separation algorithm, modeling of metrical
relations, and dynamic programming. zplane is a commercial
beat tracking algorithm* used in a variety of products such as
Ableton Live and was designed for whole songs rather than
snippets. klapuri [19] uses a bank of comb filters and simul-
taneously estimates three facets of the audio: the atomic tatum
pulses, the tactus tempo, and the musical measures using a prob-
abilistic formulation. It is also more complicated than our pro-
posed method. echonest is version 3.2.1 of the Echo Nest track
analyzer®, and achieved the highest Accuracy 1 performance.
The algorithm is based on a trained model and is optimized for
speed and generalization. ibt [14], [21] uses multiple agents
which create hypotheses about tempo and beats that are con-
tinuously evaluated using a continuous onset detection func-
tion. qm — vamp [13] is implemented as part of the Vamp audio
plugins® which outputs a series of varying tempos. It is a beat
tracking algorithm and thus outputs a set of tempos indicating
the varying tempo throughout the audio file. To compare this set
to the single fixed ground-truth tempo, we took the tempo in the
longest segment (the “mode” tempo). We also evaluated this al-
gorithm using the weighted mean of those varying tempos and
the median tempo, but these had lower accuracy than the mode.
scheirer [5] was created in 1996 and uses a bank of parallel

4[aufTAKT] V3, http://www.beat-tracking.com
Shttp://developer.echonest.com/

Shttp://vamp-plugins.org/

comb filters for tempo estimation. It was selected as a baseline
to observe how tempo induction has improved over time.

C. Results and Discussion

Table II lists some representative results comparing the
proposed method with both commercial and academic tempo
estimation methods. The + and — indicate that the difference
between this algorithm and stem is statistically significant.
Bold numbers indicate the best-performing algorithm for this
dataset. The “Dataset average” row is the mean of the algo-
rithm’s accuracy between all datasets, while the “Total average”
is the accuracy over all datasets summed together. For some
of the datasets and algorithms previously published results
[7], [6] might slightly differ due to the corrected ground-truth
annotations used in our experiments. For algorithms that had
variants such as ibt, we selected the best performing variant.
As can be seen stem — svm3 has the second-best performance
in both Accuracy 1 and Accuracy 2. Although it is not the best
performing in Accuracy 2 the performance is not statistically
different than the best performing algorithm.

One of the difficulties of the accuracy 1 measure is that many
pieces have two different plausible “finger tapping” tempos,
generally related by a factor of 2 or 3. For example, a particular
waltz may be annotated as being 68 BPM or 204 BPM. The dif-
ference can depend on the specifics of the music but also on the
annotation method — tapping a finger can be comfortably per-
formed at 204 BPM, but foot tapping cannot be performed that
quickly and would thus attract an annotation of 68 BPM. Even
if no physical tapping motion is performed, this distinction can
still influence the annotators. When the annotator listens to the
music, is she thinking about conducting an orchestra, or playing
bass notes with her left hand on the piano?

The two datasets with very stable beats (ACM MIRUM?* and
BALLROOM?¥*) have very high Accuracy 2 scores (98% with
the gkiokas algorithm), while the Accuracy 1 score suffer from
the problem of not knowing which multiple of the tempo was
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chosen by the specific annotator(s) of that file. The notable ex-
ception is the echonest algorithm which achieved an Accuracy
1 score of 89.8% in BALLROOM*.

HAINSWORTH contains a number of files with changing
tempo, which poses an obvious problem for annotators required
to specify a single BPM value. For example, if a piece of music
plays steadily at 100 BPM for 10 seconds, slows to 60 BPM over
the course of 2 seconds, then resumes playing at 100 BPM for
the final 5 seconds, what is the overall tempo? Since this dataset
was primarily intended for beat tracking, the annotated ground-
truths are the mean of all onsets. However, in some applica-
tions of tempo detection (e.g., DJs matching tempo of songs),
the “mode” tempo would be more useful than the “mean.”

ISMIR2004 SONGS contains a few songs which could be
interpreted as either i or ¢, as well as more unusual meters such
as i . In addition, it contains some songs with changing tempos;
again, there is no clear-cut musically correct answer.

Most files in the GTZAN GENRES* collection have a steady
tempo, but songs from its blues, classical, and jazz genres con-
tain varying tempos.

The SMC MIRUM dataset was obviously the most chal-
lenging; this is not surprising as it was specifically constructed
to serve that purpose.

Finally, we shall explain the differences between these results
and our previously-published results in [33]. As mentioned
in Section III-A, we correct the ground-truth for the ACM
MIRUM, BALLROOM, and GTZAN GENRES datasets. In
addition, the previous echonest analyzer was a pre-release
build of 3.2 whereas this paper used echonest 3.2.1 release.
The previous qm — vamp algorithm was calculated using the
weighted mean of varying tempos, however we later determined
that using the mode produced better results, so we include those
in this paper. The klapuri, zplane, and gkiokas algorithms
were previously run on a copy of ISMIR04 SONGS which
was missing one file. When we discovered that problem, we
adjusted the evaluation scripts to fail if the filenames do not
match exactly between the lists of ground-truth and detected
tempos. This led to the discovery that approximately 5% of the
tempo estimates from scheirer were misplaced?.

D. Beat Tracking Preliminary Investigation

The proposed algorithm has been designed and optimized ex-
plicitly for the purpose of tempo estimation. At the same time,
the cross-correlation with the sequences of pulses can be viewed
as a local attempt at beat tracking. Table III shows the results of
a preliminary investigation which compares the proposed algo-
rithm with some representative examples of beat tracking algo-
rithms. We were able to obtain beat tracking information for two
of the datasets considered. The SMC_MIRUM dataset was cre-
ated and described by [39] and the beat tracking annotation for
the BALLROOM dataset were obtained via [43]. All the results
except the second entries for Klapuri were computed using our
evaluation infrastructure. The second entries from Klapuri are
from the previously reported results ([43], [39]).

"The output occasionally included beat information, but the script which ex-
tracted the tempo estimate was not sufficiently flexible to handle files where the
beat information was the final line of the output. The script has been fixed.

TABLE III
BEAT TRACKING RESULTS

BALLROOM
BT AML{(%) F-measure (%) Inf. Gain (bits)
stem 51.4 59.9 2.02
klapuri 86.7 76.1 2.85
klapuri [39] 87.3 - -
ibt 75.1 70.9 2.07
scheirer 54.9 68.1 2.11

SMC_MIRUM
BT AML{(%) F-measure (%) Inf. Gain (bits)
stem 17.9 27.5 0.69
klapuri 33.9 36.2 0.92
klapuri 33.9 36.2 0.92
ibt 23.1 27.4 0.71
scheirer 18.5 30.2 0.69

As can be seen, our proposed algorithm performs poorly com-
pared to other available algorithms for beat tracking. As ex-
pected, performance is significantly better in the BALLROOM
dataset compared to the SMC MIRUM, which has been explic-
itly designed to be challenging for beat tracking. The poor per-
formance of our approach is not unexpected, as it has been de-
signed explicitly for the purpose of tempo induction rather than
beat tracking. Although we did not perform a detailed analysis
of the beat tracking failures, it is straightforward to speculate
about why our current approach fails and how it can be im-
proved. As we process the audio signal in overlapping windows
we only output beats for the part of the window that has not been
processed before. Combining beat location estimates from mul-
tiple overlapping windows would probably increase reliability.
The estimated beat locations are the regularly spaced pulses for
the best tempo candidate and phase. If the “best” pulse train is
detected off beat it will still give the correct tempo but do poorly
in beat tracking. A possible improvement would be to search for
local peaks in the onset strength function in the vicinity of the
regularly spaced pulses in order to deal better with small local
tempo fluctuations. There is also no continuity between the beats
estimated in one window and the next. Finally, we perform beat
tracking in a causal fashion so we do not take advantage of the
accumulation and the final doubling heuristic. A non-causal al-
ternative that would probably perform better would be to take
the final tempo as the starting point for finding a sequence of
beat locations across the track. A more complete investigation of
beat tracking performance and a system for beat tracking based
on the processing steps of the proposed method is beyond the
scope of this paper.

IV. DISCUSSION OF COMPLEXITY

In this paper we make the claim that the proposed algorithm is
simplified compared to existing tempo induction systems. The
simplicity (or complexity) of an algorithm is difficult to analyze
and can refer to different properties including algorithmic com-
plexity in terms of number of floating point operations, com-
putation time in terms of a specific implementation, number of
stages and parameters, and the difficulty of implementing a par-
ticular algorithm. A full analysis of these properties for all sys-
tems referenced is beyond the scope of this paper as it would
probably take another full journal article to do it properly. Some
of the issues that make such an analysis difficult are 1) some of
the other systems described also perform beat tracking so direct
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comparison would be unfair, 2) the implementation language
and degree of optimization can have dramatic impact in actual
computation time, 3) for some algorithms (zplane, echonest)
we do not have access to the underlying source code, 4) the dif-
ficulty of implementation is also affected by availability of code
for processing blocks such as the Fast Fourier Transform.

In order to address the issue of complexity we contrast
our proposed approach with the three top performing systems
(gkiokas, klapuri, ibt) for which we have access to their
implementation and description. In terms of extra stages, in
contrast to gkiokas we do not perform harmonic/percussion
separation. In addition, our accumulation strategy is simpler
than dynamic programming, we do not utilize a constant-Q
transform, and the number of features used in the machine
learning stage is smaller. The bank of comb filters used in
klapuri can be considered more complicated to implement
(and probably slower) than our use of the Fast Fourier Trans-
form, for which efficient implementations are widely available.
In addition, the probabilistic tracking at multiple rhythmic
levels is more complicated. However, the klapuri algorithm
is designed to perform accurate beat tracking whereas our
approach only uses beat tracking indirectly to support tempo
estimation but is not optimized for this task. Finally, the
multi-agent approach of ibt can be considered a more com-
plicated version of our strategy of estimating candidate tempos
and their associated phases with more complex tracking over
time. In terms of implementation complexity, the published
descriptions of these algorithms, in our opinion, tend to be more
complex and have more details but it is hard to objectively
quantify this. We encourage the interested reader to read the
corresponding papers and contrast them with the description of
our algorithm. Ultimately we believe that there is no easy way
to claim that our algorithm is simpler than the alternatives but
at the same time in our opinion there is reasonable justification
for that claim. One can determine empirically whether a partic-
ular algorithm meets their particular needs and constraints and
choose from what is available.

A. Contribution of Portions of the Algorithm

In terms of computation, the most time-consuming process is
the computation of the Fast Fourier Transform (FFT) for calcu-
lating the onset strength signal as well as the computation of the
FFTs for the generalized autocorrelation of the onset strength
signal. To investigate the contribution of each part of the algo-
rithm, we altered or disabled individual portions of the algo-
rithm and tested the results. This could be considered a form of
“leave one out” analysis. It does not capture the whole range of
interplay between distinct modules, but a few interesting facets
can still be gleaned from the results.

To evaluate the algorithm’s performance without the uncer-
tainty presented by machine learning, we temporarily disabled
the doubling heuristic. The Accuracy 1 measure is therefore
lower than we would otherwise expect, but the Accuracy 2 is still
a good measure of the algorithm’s performance with the specific
modification. In addition to those two measures, we added two
others: Oracle 1, 2 and Oracle 0.5, 1, 2. These correspond to an
“ideal” multiplier decision-maker: If we knew whether to mul-
tiply by 1 or 2 (or 0.5, 1, or 2), what would the accuracy be?

TABLE 1V
RESULTS AFTER ALTERING PORTIONS OF THE ALGORITHM. DEFAULT
VALUES ARE SHOWN IN GRAY BACKGROUND, AND TIME IS
REPORTED IN MEAN SECONDS (AND STANDARD DEVIATION) FROM
BENCHMARKING THE BALLROOM TEMPOS DATASET.

Accuracy Oracle
Generate OSS 1 2 12 0512 Time
FFT window 256 514 90.0 | 83.0 88.7 229.4 (0.8)
512 51.0 90.5 | 84.0 89.0 330.8 (0.8)
1024 524 914 | 85.0 90.2 545.4 (2.2)
20438 524 914 | 849 89.9 997.0 (1.1)
No low-pass filter 50.0 90.2 | 83.1 88.5 536.6 (2.4)
Accuracy Oracle
Beat Period 1 2 12 0512 Time
Autocorrelation ¢ = 2.0 | 58.0 80.3 | 75.7 79.9 541.3 (1.7)
c=04 | 520 91.1 | 84.1 89.9 553.6 (1.6)
c=0.5 | 524 914 | 850 90.2 545.4 (2.2)
c=0.6 | 533 912 | 86.2 89.7 553.6 (2.7)
Harmonic enh.: none 51.6 899 | 85.1 88.7 540.3 (2.2)
2 519 909 | 859 89.7 543.9 (1.2)
24 524 914 | 85.0 90.2 545.4 (2.2)
234 51.8 90.6 | 84.6 89.5 543.9 (2.0)
No pulse train 444 88.0 | 454 85.7 540.1 (1.1)
Accuracy Oracle
Accumulator 1 2 12 0512 Time
Gaussian: disable 52.8 89.1 | 824 87.8 545.1 (1.3)
oc=25 524  91.1 | 849 89.9 544.5 (1.0)
o=10 524 914 | 85.0 90.2 545.5 (2.2)
o=15 522 90.8 | 84.8 89.6 5459 (2.4)

These show the maximum possible Accuracy 1. In most cases,
Oracle 0.5 1 2is very close to Accuracy 2. The results are shown
in Table IV.

Out of those modifications, the most interesting case is when
performing a normal autocorrelation (¢ = 2) rather than a gen-
eralized one (with ¢ = 0.5): Accuracy 1 is significantly im-
proved. However, this change comes at the cost of Oracle ac-
curacy and Accuracy 2, and thus leads to lower results overall
(even with Accuracy 1) when the octave decider is included.
The second-worst results come from disabling the pulse trains.
We can see moderate losses from disabling the OSS low-pass
filter, the beat period detection’s harmonic enhancement, or the
accumulator’s use of Gaussians. If no portions of the algorithm
are strictly disabled, the algorithm is fairly resistant to tweaking
parameters.

To evaluate the processing time, we benchmarked? the algo-
rithm on the BALLROOM dataset. Each modified version of the
algorithm was run five times and summarized with their mean
and standard deviation. Changing the FFT window length had a
significant effect on the processing time, with the time for each
30-second song ranging from 0.33 seconds to 1.43 seconds. By
contrast, the other modifications had almost no effect, ranging
from 0.77 seconds to 0.79 seconds per song. This suggests that
altering the onset strength signal is the best way to improve the
efficiency of the algorithm.

V. REPRODUCIBLE RESEARCH

We provide three open-source implementations of the pro-
posed algorithm. The first is in C++ and is part of the Marsyas
audio processing framework [44]. The second is in Python and is

8The system used for the benchmarks was an Intel(R) Xeon(R) E5520 at
2.27 GHz, running MacOS X 10.7.5.
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a less efficient stand-alone reference implementation. The third
is an Octave/MATLAB implementation, also stand-alone.

We created multiple implementations to test the repro-
ducibility of the description of the algorithm, as this is an
increasingly important facet of research [34]. In addition to
providing easy comparison for future algorithms, these imple-
mentations could serve as a baseline for future tempo or beat
tracking research. All versions are available in the Marsyas
source repository?, with the final version having the git tag
tempo — stem. All evaluation scripts and ground-truth data,
pointers to the audio collections used, and the two standalone
implementations are included in a webpage!0. Interested readers
are encouraged to contact the authors for details if they have
any questions regarding these resources.

VI. CONCLUSIONS

We have presented a streamlined, effective algorithm for
tempo estimation from audio signals. It exploits self-similarity
and pulse regularity using ideas from previous work that have
been reduced to their bare essentials. Each step is relatively
simple and there are only a few parameters to adjust. A thor-
ough experimental evaluation with the largest number of data
sets and music track to date shows that our proposed method
has excellent performance that is statistically similar to the top
performing algorithms, including two commercial systems. We
hope that providing a detailed description of the steps, open
source implementations, and the scripts used for the evaluation
experiments will assist reproducibility and stimulate more
research in rhythmic analysis.

In the future we plan to extent the proposed tempo estima-
tion method for beat tracking. In the current implementation
the “same” beat is estimated by different overlapping windows.
These potentially different estimates could be combined to form
a more reliable estimate and adjusted in time to coincide with
onsets, possibly at the expense of regularity, to deal in order
to deal with changing tempo at the beat level. The challenging
SMC dataset could be a good starting point for this purpose.
Higher-level rhythmic analysis such as detecting bars/down-
beats could also be performed to assist with beat tracking. Cur-
rently the proposed method works for music in which the tempo
is constant or near constant. There are two interesting direc-
tions for future work we plan to explore: 1) we plan to ex-
tend the method for the case where the tempo varies during the
piece, 2) a machine learning approach can be used to automat-
ically determine whether the near constant tempo assumption
is valid or not and adjust the algorithm accordingly. Frequently
music (especially in popular genres) exhibits strong repetition of
rhythmic patterns. These patterns could be detected and used as
descriptors for various music information retrieval tasks. In ad-
dition, they can potentially be used to improve tempo and beat
tracking estimates in a genre-specific way. Finally we plan to
consider the adaptive “radio” scenario in which the boundaries
between tracks are not known and the tempo estimation and
beat tracking must “adapt” to the new incoming data as tracks

%https://github.com/marsyas/marsyas
10http://opihi.cs.uvic.ca/tempo/

change. This would probably require some soft decay of the ac-
cumulation part and a slightly different strategy for tempo esti-
mation evaluation.
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