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ABSTRACT
This work improves the realism of synthesis and performance
of string quartet music by generating audio through phys-
ical modelling of the violins, viola, and cello. To perform
music with the physical models, virtual musicians interpret
the musical score and generate actions which control the
physical models. The resulting audio and haptic signals are
examined with support vector machines, which adjust the
bowing parameters in order to establish and maintain a de-
sirable timbre. This intelligent feedback control is trained
with human input, but after the initial training is completed,
the virtual musicians perform autonomously. The system
can synthesize and control different instruments of the same
type (e.g., multiple distinct violins) and has been tested on
two distinct string quartets (total of 8 violins, 2 violas, 2
cellos). In addition to audio, the system creates a video
animation of the instruments performing the sheet music.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing; I.2.1 [Artificial Intelligence]: Ap-
plication and Expert Systems

General Terms
Algorithms, Design, Human Factors

Keywords
Violin synthesis, physical modelling, intelligent feedback con-
trol, machine learning, autonomous music performance

1. INTRODUCTION
Computer synthesis of music performed by bowed string

instruments is a challenging problem. Unlike instruments
whose notes originate with a single discrete excitation (e.g.,
piano, guitar, drum), bowed string instruments are con-
trolled with a continuous stream of excitations (i.e. the bow
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Figure 1: Video produced automatically from the
sheet music, performed by two distinct string quar-
tets: http://percival-music.ca/mm2013.html

scraping against the string). Many existing synthesis meth-
ods utilize recorded audio samples. Although sampling per-
forms reasonably well for single-excitation instruments, the
results are not as good for continuous-excitation instruments.

There are a number of applications of computer synthe-
sis of music. The main three are: interactive performance
with novel interfaces, preparing an audio track with manual
adjustments to the synthesis, and autonomous performance
of music with no human input. It is the latter goal that
this work focuses on; a typical example would be to allow a
composer to quickly hear a rough performance of her work
in progress, illustrated in Figure 1. Other applications could
be to create audio and video as part of a digital violin tutor
[37], or to allow users of a digital music library [10] to hear
what the sheet music sounds like without requiring an audio
recording; this could greatly mitigate copyright concerns.

Autonomous performance of music is tested in the Musical
Performance Rendering Contest for Computer Systems [16],
in which researchers write programs to perform piano music
(generally Mozart or Chopin) which are then performed on
a disklavier (a computer-controlled acoustic piano). In con-
trast, our work focuses on string quartets instead of piano.

http://percival-music.ca/mm2013.html


1.1 Related Work
One method of synthesizing music in music notation pro-

grams is sample-based synthesis: a selection of samples from
a library of recorded audio are concatenated. This process
can be enhanced in various ways, such as Reconstructive
Phrase Modeling [18] or Spectral Modelling Synthesis (SMS)
[31], in which instead of concatenating the time-domain data
directly, the samples are first analyzed in some manner and
then reconstructed. For example, in SMS, a spectral analy-
sis of the samples results in a set of partials plus a residual
signal which is treated as filtered noise. A re-synthesis of
these partials plus noise captures the transients at the be-
ginning of notes much better than a technique relying on
partial-based synthesis alone. SMS has been used to great
effect in the Vocaloid singing synthesis program [17].

Analysis and resynthesis of recorded audio can also be
used to create a virtual instrument which is then controlled
with a virtual performer which creates a stream of control
data, such as trumpet performances [7]. A similar approach
was used to create violin performances: a neural network
was used to predict spectral data based on (potentially) sim-
ulated physical actions [24]; the resulting virtual violin was
then performed by recording physical actions of real violin-
ists and re-synthesizing those recorded actions [19].

Another method of generating audio is by modelling the
physics of the instrument in response to various actions (e.g.,
bow force for violin, air pressure for clarinet, strike posi-
tion for drums). The mechanics of musical instruments is a
well studied topic in acoustics and physical modeling synthe-
sis uses computational techniques to simulate the physics of
sound generation in instruments. A good overview of phys-
ical modeling is presented in [33] while the standard library
is the Synthesis ToolKit in C++ [26, 32]. There are two
main problems with physical models: they are more compu-
tationally intensive than most sample-based synthesis meth-
ods, and they are difficult to control. One early method of
performing music with a physical model used a hierarchical
set of expert systems which played a simulated trumpet [6].
Violin music has been created by recording physical actions
from real violinists and re-synthesizing the actions with a
physical model [9].

Assuming that the physical model acts similar to a real in-
strument, important clues to its performance can be gained
by studying the actions of skilled musicians. Various sys-
tems have been created to record actions of real violinists
(notably bow force, velocity and distance from bridge, al-
though some projects recorded other factors) [9, 19, 38, ?],
for either the analysis of musical performances or resynthe-
sis of audio. Performing music by concatenating segments
of these recordings is limited by three factors: it assumes
that the behaviour of the physical simulation is sufficiently
similar to the real instrument used to record the actions,
it requires skilled musicians and specialized equipment to
record the musicians’ actions, and it assumes that the musi-
cians will always use the same actions to produce the desired
sound rather than adjusting their actions on the fly.

In this work on performing with multiple distinct string
quartets, we used physical modelling to create the audio.
Sampling synthesis and even SMS are limited to the instru-
ments available in the sample library. Recording a new in-
strument — such as adding a second distinct-sounding vi-
olin to a library with one existing recorded violin — is an
expensive undertaking, requiring a recording studio, audio

engineer, a skilled violinist, etc. One might consider altering
the original instrument’s audio to create a“new”instrument,
such as slightly altering the pitch or filtering the upper par-
tials, but these techniques are not perfect. By contrast,
creating a new instrument with physical modelling is much
simpler: measuring physical constants from a new instru-
ment can be done quickly. One important factor of sample-
based synthesis is that it does not reproduce the sound of
a particular instrument; rather, it produces the the sound
a particular instrument, being played by a particular mu-
sician, performing a particular set of pitches and timbres.
When recording a single note on a piano, the musician has
minimal effect, as the only interaction is the speed and force
of depressing the piano key. But for continuous-excitation
instruments such as the violin, clarinet, or human voice, the
musician’s control of the instrument plays a huge role in the
resulting sound. Recording the sound of a skilled musician is
a benefit when seeking a quick reproduction of decent sound,
but it limits the flexibility of the music.

Physical modelling allows us to consider the instrument
separately from the musician and performance style. To
address the problem of controlling the physical models, we
turned to machine learning to train the system to perform
virtual instruments. Previous uses of machine learning in
performance focused on recognizing performer gestures [12],
while machine learning has been used off-line to evaluate
beginning violinists [2], recognize cellists from their timbre
[3], rank violins (rather than violinists) [36], and estimate
physical actions from violin audio [25]. Active learning [4] is
a technique in machine learning in which the computer gen-
erates examples for the user to evaluate; it has been used
to generate personalized audio equalizers [21]. In contrast,
we use a supervised learning approach to “teach” the virtual
performer/listener to characterize the quality of the sound
generated by the physical model and adjust the controls dy-
namically to achieve correct intonation and good timbre.

1.2 Our System: Vivi, the Virtual Violinist
Our goal is to allow a string player (not necessarily a pro-

fessional) to train the system to perform any simulated vio-
lin, viola, or cello in a few hours with no specialized equip-
ment. Once the system (Figure 2) is trained to recognize
good or bad timbre, it automatically calibrates various pa-
rameters for each specific instrument. Given an electronic
version of sheet music, the system extracts musical events
to create a list of notes with extra parameters such as “note
begins a slur” or “glissando from A4 to C]5”. These notes
are fed into an intelligent feedback loop which adjusts low-
level physical actions in response to the audio and haptic
output of the physical model.

Our work bridges the gap between physical modelling of
instruments, machine learning on acoustic signals, and mu-
sical performance. The main contributions of this paper are:
1) an intelligent feedback control system for violins trained
with supervised and adaptive learning with no additional
hardware required, 2) a flexible method of calibrating the
system to perform a new bowed string instrument (violin,
viola, cello), 3) a complete platform for the performance of
string quartets, allowing researchers to work on one indi-
vidual aspect of the process without requiring them to be
experts in other areas. To enable and encourage future re-
search, the entire system and all training data is available
under a permissive copyleft license (the GNU GPLv3).



This paper is structured as follows: Section 2 gives a
summary of the physical modelling library we used, while
Section 3 details the machine learning and feedback loops
involved in performing notes. Section 4 discusses the cali-
bration of initial values used for the feedback control, and
Section 5 describes the interpretation of a musical score into
notes. Section 6 gives an overview of the video output, and
Section 7 discusses the system and future work. Section 8
gives concluding remarks.

2. PHYSICAL MODELLING
We used the Artifastring library [22, 23], a highly opti-

mized C++ library performing physical modelling of violin,
viola, and cello. The model’s string vibrations and bow-
ing algorithm was based on Demoucron’s work [9]: given
the constants in Table 1, the string displacement y(x, t) at
position x and time t, subject to external forces Fi(x, t), is:

ρL
∂2y(x, t)

∂t2
− T ∂

2y(x, t)

∂x2

+ E
πd4

64

∂4y(x, t)

∂x4
+RL(ω)

∂y(x, t)

∂t

=
∑
i

Fi(x, t) (1)

The wave equation (1) is decomposed into the sum of

modes with eigenvectors φn(x) =
√

2
L

sin
(
nπx
L

)
. The bow

friction is modelled with the classical hyperbolic friction
curve (Equation 2) [20], with the addition of the stochas-
tic term µe = µcu(t), where u(t) is a uniform random value
0.95 ≤ u(t) ≤ 1.0. ∆v = vh0 − vb, with vh0 being the veloc-
ity the string would move under the bow if there were no
external forces.

Ffriction =

 Fb

(
µd + (µs−µd)µe

µe−∆v

)
if ∆v < 0

−Fb

(
µd + (µs−µd)µe

µe+∆v

)
if ∆v > 0

(2)

For efficiency, Artifastring models the bow as a single
point force. Modelling the bow as two point forces would
require solving a pair of non-linear equations with two vari-
ables or a single quartic (polynomial of degree 4). As may
be expected from a modal simulation, the resulting sound
changes considerably if the bow position is a simply-rational
position, meaning a proportion of the string away from the
bridge with a small denominator, such as 1

6
or 1

7
.

Symbol Explanation
ρL Linear density [kg/m]
T Tension [N]
L Length [m]
d Diameter [m]
E Young’s Elastic Modulus

RL(ω) Frequency-specific damping
µs, µd, µc Friction coefficients

s String number [0,1,2,3]
xb Bow-bridge distance [normalized]
Fb Bow force [N]
vb Bow velocity [m/s]
xf Left-hand finger position [normalized]

Table 1: Physical constants and control variables
used. A body impulse from each instrument was
also recorded.
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Figure 2: Overview of Vivi, the Virtual Violinist.

Finger forces (left-hand finger and right-hand plucking)
were implemented as damped springs. The instrument body
was modelled as a linear time-invariant system by convolving
the sum of string outputs with 35 ms of a recorded impulse
response. The library includes measurements of 5 violins,
2 violas, and 3 cellos. In addition to the audio output of
the instrument body, the model also provides two signals
for each string s: the audio output As[t], and the right-hand
haptic output arising from the force of the bow on the string
Hs[t]. For further details, see [22].

3. INTELLIGENT FEEDBACK CONTROL
The mixed strength and curse of physical modelling is that

it reproduces the real-world physics of instruments. When
played by an expert musician, the results are very pleasing;
however, as any parent or neighbour of a young child learn-
ing violin knows, when played by a novice the sounds can be
rather harsh sounding. A violin is a complex system with
many pitfalls which may not be apparent at first glance.
For example, the pitch is not controlled exclusively from the
left-hand finger placement: all actions of the bow (xb, vb, Fb)
affect the pitch and can alter it by -70 to +20 cents1 [28,
9]. Due to the non-linear friction equation, the string can
react in a very different manner depending on those exist-
ing vibrations; furthermore, due to the stochastic u(t) value,
the string does not always react in the same manner. This
is illustrated in Figure 3, and prompted us to use adaptive

1Cents are a logarithmic measurement system for musical
pitch; given two pitches a and b, the cent x = 1200 · log2

(
b
a

)
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Figure 3: Different output with identical bow-
ing parameters. Cello D string, bowed for 1 sec-
ond with xb = 0.104, vb = 0.5 m/s, Fb = 0.5. The
third example was created by bowing the string for
1 second with vb = −0.5 m/s, then 1 more sec-
ond after setting vb = 0.5 m/s. There is a large
different in the odd partials. Audio examples:
http://percival-music.ca/mm2013.html

http://percival-music.ca/mm2013.html


Note beginning
ps Physical control variables as per Table 1
ms Target pitch (in MIDI)
kb Keep bow force (for slurs and ties)
ke Keep ears: do not reset pitch history (for ties)
yb Bow position along bow (for video output)
Note ending
pe Physical control variables as per Table 1
me Target pitch (in MIDI)
lb Lighten bow force (to change string cleanly)
kv Keep bow velocity (for slurs or “ring”)

Table 2: Note modifiers: the musical score is sep-
arated into a series of notes, each of which is per-
formed with the feedback control.
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Figure 4: Schelleng diagrams of selected strings, the
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viation of spectral flatness measure (SFM); Green:
mean of relative strength of f0; Blue: mean of SFM.
We desire a low standard deviation, strong f0, and
low SFM; so the best colour is light green.

feedback control rather than preset control values.
To accommodate the variability of our instruments, we

used feedback control (Figure 2). There are two feedback
loops: bow control (timbre, from the right hand) and finger
control (pitch, from the left hand). The precise behaviour of
the control loops receives minor modifications based on the
type of note (shown in Table 2), but those modifiers only
apply to the beginning and ending of each note.

Past work [27, 30, 14, 9] simulated string behaviour with
constant input parameters (or in the case of [14], constant
bow acceleration) mapping the region of parameters which
results in the desirable Helmholtz motion in which the bow
slips once per cycle of the fundamental frequency of the
sound [15]. These plots can provide valuable insights into
the behaviour of the model. Schelleng famously predicted
the range of bow forces which could establish Helmholtz mo-
tion for a given bow velocity and bow-bridge distance [27].
Schelleng’s predictions were later tested with an automated
machine [29], where it was found that the predicted maxi-

Dynamic Bow position xb Bow velocity vb

(fraction of L) (m/s)
ff 0.104 0.50
f 0.118 0.42

mf 0.134 0.34
mp 0.154 0.26
p 0.176 0.18
pp 0.192 0.10

Table 3: Physical parameters determined by dy-
namic. The velocity will be negative for an upbow.

mum bow force was quite accurate, while the minimum bow
force differed from the predictions. Figure 4 shows “Schel-
leng diagrams” from empirical simulation. Each diagram
was generated from one million simulations: 200 positions
of xb, 200 forces Fb, with each pair repeated 25 times to eval-
uate the stochastic behaviour. This exposes one problem of
the modal simulation: on thin strings (e.g., violin E, cello
A) the upper limit of Fb for good sound varies depending on
whether xb is close to a simply-rational position such as 1

6
.

To avoid the problematic bow positions xb, we turned to
real-world violin pedagogy [5], in which violinists are in-
structed to play in a specific bow position (termed “lanes
on the Kreisler highway”) for different dynamics. We take
inspiration from another aspect of violin teaching, wherein
the amount of bow for each note is often specified by the
teacher (such as “half” or “quarter bow”), and the tempo
is given by the piano accompaniment. Teachers sometimes
direct students to imitate the teacher by playing music with
the student (sometimes called the “mirror game”), in order
to emphasize the amount of bow length to use. Students
must therefore adjust their bow force to produce a good
tone regardless of the teacher-imposed bow velocity. Acous-
tics research [28] showed that the overall loudness of a note
is correlated with vb

xb
. We set the bow velocity according to

dynamic as well; the preset values for xb and vb are shown
in Table 3.

3.1 Interactive Machine Learning
To train the computer to adjust the bow force Fb, we drew

inspiration from human pedagogy: A human “teacher” will
give judgements about simulated audio from the physical
model. Those judgements are used to train a set of “virtual
ears” which can then adjust the bow force in the absence of
the teacher. This is analogous to young students practicing
with the Suzuki violin method [34], in which a parent of
the child is encouraged to aid in the home practice. Some
poetic license is used here in calling the machine learning
feedback “virtual ears”. In addition to using the generated
audio signal as input the supervise learning we also utilize a
haptic signal from the bow’s contact with the string. This

Class c Human judgement of sound Fb in example
1 not audible 0.002 N
2 “wispy” or “whistling” 0.11 N
3 acceptable 0.83 N
4 “harsh” or “detuned” 5.32 N
5 not recognizable as violin sound 10.9 N

Table 4: Human judgements of bowing. Audio ex-
amples: http://percival-music.ca/mm2013.html

http://percival-music.ca/mm2013.html
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Figure 5: Screenshot of interactive training with
our system. Middle portion of screen: the musi-
cal score with the first note in bar 3 highlighted.
Bottom portion of the screen: shows the Fb used
throughout the note (in black) and the SVM out-
put c′ (coloured arrows up or down); a portion of
the SVM output has been selected (in yellow) for
labelling and retraining.

String Num. String Num. String Num.
Violin G 97 Viola C 59 Cello C 71
Violin D 67 Viola G 62 Cello G 68
Violin A 73 Viola D 54 Cello D 55
Violin E 56 Viola A 61 Cello A 99

Table 5: Number of examples in the datasets.

“virtual finger”provides additional information that can help
produce and maintain a good tone, intended to mimic a real
musician’s sensations in her bow hand.

There are five possible judgements about the sound, pre-
sented in Table 4. The initial training of the system takes
place within an interactive python script, where the user
freely adjusts Fb in order to create audio examples for each
class. Once the initial training is complete, the user listens
to music while watching the sheet music, and indicates any
incorrect judgements by clicking on the note(s) in the score
and labelling the questionable audio as shown in Figure 5.

Internally, features are extracted from the audio As[t]
from the currently-bowed string s, and haptic Hs[t] output
from the bow (Section 2). A standard set of features are ex-
tracted from each signal using Marsyas [35]. Time-domain
features used were RMS, peak to average ratio, and zero
crossings. Spectral-domain features used were the rolloff,
centroid, relative energy in the f0 peak, flatness measure,
and power to average ratio. These features were computed
on both the As[t] and Hs[t] signals and concatenated to-
gether. Finally, xf and xb were appended to the feature
vectors. The resulting vectors were used to train one Sup-
port Vector Machine (SVM) classifier for each string. The
“virtual ears” operate at 100 Hz, with a sampling rate of
44100 Hz, hop size of 441 samples, and window size of 2048
samples. There are a total of 12 SVMs, one for each string
of each instrument. Once fully trained with the musical ex-
ercises in Section 4.3, the SVMs are very accurate (99.5%–
100% accuracy in 10-fold cross-validation). Each training
example in the databases (Table 5) consist of three files:
audio data, haptic data, and musician actions.

3.2 Bow Control: Timbre
While performing a note, the“virtual ears”are used to dy-

namically adjust the bow force Fb in the simulation in order
to fix any unpleasant sound. Concretely, the As[t] and Hs[t]
signals from the currently bowed string s are fed into rele-
vant SVM, which outputs a probability pc[h] that the input
vector belongs to class c for hop h. We define the weighted
mean of these probabilities c′[h] = 3 − 1

5

∑5
c=1 cpc[h] to be

used to adjust the bow force:

Fb[h+ 1] =

{
F ib if h < W

eln(Fb[h])−c′[h]K else
(3)

To avoid the initial transients which have little relation to
the labelled audio from the sustained portion of the sound,
we omit the first 30 ms (3 frames) from the control loop. We
then begin filling the window, but avoid machine learning
judgements until the window does not contain any unini-
tialized data (wait another 4 frames). We thus set W = 7.
F ib and K are calibrated for each string, dynamic, and three
pitches in Section 4. If the desired note parameters are not
one of the calibrated values (e.g., a note in the middle of a
cresc. or a different pitch), F ib and K are linearly interpo-
lated from the nearest two calibrated values.

By default, notes are assumed to be détaché“on the string”;
this is the first bow-stroke taught in the Suzuki method of
violin playing [34]. In terms of the control loop, the bow
force is non-zero before beginning to move the bow. The
bow velocity vb and position xb are set based on the dy-
namics in Table 3. We experimented with setting vb to 0
and accelerating to the target vb, but this produced greater
variability in the note attacks as the string would sometimes
stabilize in undesirable states such as those shown in Fig-
ure 3. vb is set to zero 50 ms before the ending of the note.
For this final portion of the note, Fb is gradually reduced
(Fb(t+ 1) = 0.5 · Fb(t)) to avoid a sudden“pluck-like” sound
which occurs if the bow force is suddenly set to zero.

The bow control loop is modified according to the follow-
ing variables from Table 2. If kb is enabled, then F ib is not
used and Fb(0) is retained from the final Fb in the previous
note. If kv is enabled, then then vb is not set to zero at the
ending of the note, and Fb is not reduced at the end of a
note. In addition, Fb is not reduced if lb is enabled.

3.3 Finger Control: Pitch
String players must adjust the finger position xf to achieve

correct intonation. Pitch detection was performed with the
YINFFT algorithm, an extension [1] of the YIN algorithm
[8]. The difference between the reference pitch and the out-
put of YINFFT was taken modulo 12 to avoid octave errors
(the variation in pitch due to the bow actions is less than 1
semitone). This difference was median filtered with a filter
of length 3, becoming the error term e[h], which is used in

xf [h+ 1] =

{
xf [t] +KMe[h] if |e(t)| ≥ 0.01

xf [t] else
(4)

KM = 0.01 and the cutoff of 0.01 MIDI pitch units were
set experimentally. The finger control is modified according
to the following variables from Table 2. The reference pitch
is always set according to ms. If ke is enabled, then the pitch
filter buffer is not reset at the beginning of a new note.



3.4 Validating the Bow Controller
To verify that the feedback controller is useful, we per-

formed a few tests comparing it with a naive set of actions
(i.e. constant Fb). Past analysis of audio from violinists and
cellists (i.e. focus on the performers) [2, 3] and violins (i.e.
focus on the instrument) [36] used machine learning and sta-
tistical methods to distinguish good timbre from bad timbre,
so we will do the same thing and rely on our “virtual ears”
to provide judgements. Concretely, for each simulated note,
we define the cost as the RMS of SVM judgements c′[h] for
all H frames. A cost of 0 indicates that the “virtual ears”
found the note to be pleasing, while a cost of 2 indicates
that the note had very bad timbre (either not audible or not
recognizable as violin sound, as per Table 4).

cost =

√√√√ 1

H

H∑
h=0

(c′[h])2 (5)

Three cases will be tested: the feedback loop as described,
the feedback loop without haptic output, and disabling the
feedback (i.e. using a constant Fb). Although F ib and K are
normally calibrated (Section 4.2), for these evaluations we
will vary F ib and fix K. While the feedback is active, we set
K = 0.05; to disable the feedback, we setK = 0. In all cases,
the “virtual ears” will provide SVM judgements c′[h], but
when K = 0, (Equation 3) will have no effect on Fb which
will effectively disable the feedback control. Without the
haptic signal, the lowest 10-fold cross-validation accuracy
falls from 99.5% to 98.4%.

Figure 6 shows the system performing two notes (without
resetting the string in between) on the two “extreme” open
strings in the string quartet (violin E is the highest-pitch
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Figure 6: Comparison of naive vs. controlled per-
formance of open strings ff, with the string initially
at rest and then bowed for two notes. The range
of costs arising from 50 simulations is shown by the
inter-quartile range (IQR).

string, cello C is the lowest-pitch string). Recall that the
physical model contains a stochastic element, so multiple
performances of the same note will produce different audio
(as shown in Figure 3). The feedback control is quite flexible,
showing a lower cost if a poor F ib is used. However, if a good
F ib is used (the middle of the F ib range shown), then there
is only a small difference between the cost of a constant
bow force and the feedback control. This is no surprise;
the control loop exists to correct poor Fb values, and an
optimal Fb requires no modification. In many cases of an
optimal Fb, the string will either fall into Helmholtz motion
during the initial attack (as discussed in Section 3.2, we omit
the first 30 ms from the “virtual ears”), or else will reach
Helmholtz motion soon thereafter as the string’s vibrations
evolve naturally under even a constant Fb. The effect of
removing the haptic signal from the machine learning is not
noticeable for the first note bowed, but the cost increases
for the second note bowed. In some cases, the cost is higher
than the optimal F ib values. This occurs if the “virtual ears”
mistakenly directs the controller to change Fb when there is
a good tone, or to move Fb in the wrong direction, then the
timbre will suffer.

Although the pair of simulated notes failed to show a
compelling advantage of feedback control over a finely-tuned
constant F ib , the true strength of feedback control is revealed
in the longer musical examples in Figure 7. Our system is
trained interactively with users, so we wish to minimize the
calibration time after each set of retraining. As a result,
we rarely (if ever) have an optimal F ib . This is particularly
relevant for notes requiring an F ib interpolated from two cal-
ibrated values. As shown in Figure 8, the system only cal-
ibrates three pitches for each string. A scale (especially a
chromatic scale) requires a great deal of F ib values estimated
from interpolating between calibrated values. The feedback
controller with no haptic signals performed quite well with
the regular scale but poorly on the C string. Closer examina-
tion of the data from the scale revealed that the cello D and
A strings were “easier to play”, in the sense that they easily
produced good timbre. The distinction in playing difficulty
was suggested by the Schelleng diagrams in Figure 4.
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Figure 7: Comparison of naive vs. controlled per-
formance of exercises, box plot of 10 simulations.
Each box indicates the 25%, 50% (median), and 75%
percentiles, while the whiskers indicate the mini-
mum and maximum values.
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Figure 8: “Basic fingers” evaluated for training and
calibration. Only one string for each instrument is
shown; other strings used the same positions (i.e. 0,
1, and 6 semitones above the open string).

4. CALIBRATION
The feedback control requires two values: the initial bow

force F ib and rate of change K. These are calibrated with
the trained machine learning and by performing simulations.
This calibration is performed during the training sessions (at
a time chosen by the user), so we were required to balance
the quality of the calibrated values against the time users
spend waiting. Values were calibrated for three finger po-
sitions for each string-dynamic pair, shown in Figure 8, On
a modern desktop computer with four simultaneous threads
operating, calibrating one string takes approximately five
minutes.

4.1 Checking the SVM Behaviour
The 10-fold cross-correlation accuracy is computed for

each SVM, but this does not guarantee that the SVM is ad-
equate for controlling the bow force. If the training set does
not cover the entire range of signals produced by the phys-
ical model, the SVM could be 100% accurate on a proper
subset but not useful for controlling the model.

To check the behaviour, a series of simulations are per-
formed. Checking the validity requires human attention,
but this can be done visually instead of listening to each
audio sample. A display similar to Figure 9 is shown, show-
ing the cost of notes with various F ib . A success “sanity
test” is achieved if the extreme values of F ib on the left and
right sides are red/dark and there exist some inner values
in green/blue — this indicates that the range of F ib includes
values both above and below the optimal value.

This process is also used to estimate the range of Fb to in-
vestigate in greater detail. It begins by using the maximum
and minimum Fb values as F ib . After those two instances, it
performs a binary search to find the boundary between the
“too low”, “too high”, and “potentially good” F ib values. In
particular, any simulation whose mean of c′ is less than -0.1
is saved to a set of Vl; above 0.1 is Vh, while the remainder

is Vm. At each step, two ratios are computed: min(Vm)
max(Vl)

and
min(Vh)
max(Vm)

, indicating the range between the low, middle, and

high sets. The next exercise is computed with F ib being in
the middle of the largest ratio. This is repeated until there
are 9 examples.

4.2 Calibrating F ib and K

Once the SVM behaviour has been verified, we perform a
grid search to find F ib andK (Figure 9. K is evaluated with 5
values linearly spaced from 0.0 to 0.2, while F ib is evaluated
with 15 values linearly spaced from max(Vl) to min(Vh).
Each (F ib ,K) pair is evaluated by simulating 4 notes, all
beginning from rest. As was done in Section 3.4, the cost of
each pair is defined as the RMS of the c′ judgements. An
extremely high value ofK can result in the system oscillating
between Fb being too low and Fb being too high, particularly
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Figure 9: Calibrating Cello C, ff, open string
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Figure 10: 10 calibrations of two open strings. Each
box indicates the 25%, 50% (median), and 75% per-
centiles, while the whiskers indicate the minimum
and maximum values.

since the analysis window is slightly longer than 4 frames.
Figure 10 shows multiple calibrations of two strings to

demonstrate the reproducibility and usefulness of this step.
There are clear differences in F ib for each string and dynamic.

4.3 Musical Exercises
After completing the initial calibration, the user is en-

couraged to listen to a number of musical exercises shown
in Figure 11. This additional interactive training could be
performed using any sheet music, but we prefer to use mu-
sical scales and exercises as they are traditionally a funda-
mental step in instrumental practice; as a musician, it “feels
natural” to hear (and correct) mistakes in timbre by practic-
ing scales. However, there are also solid technical reasons to
practice scales before attempting more complicated music: it
allows us to pinpoint and fix problems in isolation. Correct-
ing mistakes in musical exercises involves a certain amount
of repetition – identify a few mistakes, label them, retrain
the SVM, then perform the exercise again. Retraining the
SVM takes approximately five seconds provided that we skip
the F ib stage, and simulating any of the exercises shown in
Figure 11 takes less than one second. Longer music (natu-
rally) takes more time to simulate, and longer to listen to.
The musical exercises cover most of the potential problems
which would be found in real music, so it is appropriate to
ensure that the performance of these exercises is satisfactory
before attempting more complicated sheet music.
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5. INTERPRETATION OF NOTATION
Our system interprets sheet music written for the Lily-

Pond2 music engraver. Music in MusicXML format can be
converted to LilyPond using the musicxml2ly tool. Musi-
cal events (e.g., notes, slurs, dynamics) are extracted from
LilyPond using scheme (a lisp variant). Figure 12 shows the
musical notation which is supported. Once a list of music
events has been obtained, they must be mapped onto the
mid-level note modifiers described in Table 2.

Some musical notation has a clear meaning, but many
elements of notation have no fixed meaning. The latter
category is known amongst musicians as “interpretation”,
and is a matter of research and debate about historical per-
formance practices, the composer’s intentions, and/or the
performer’s desires. Since this paper focuses on the feed-
back control and interactive training of a string quartet,
we avoided the question of interpretation by simply hard-
coding values for ambiguous notation. Since the system was
initially trained with the music in Suzuki violin books 1 and
2 [34], we chose constants which sounded best for Baroque
and Classical music.

The system assumes that each note is played on the high-
est string s which can produce the desired pitch; in more
musical terms, it assumes that all notes are in first position,
other than higher-position notes on the E string. If the mu-
sical score indicates that notes should be played on a partic-
ular string with typical string player notation (“sul G”, “IV”,
or a non-open fingering written over a note which could be
played with an open string), that notation overrides the de-
fault behaviour. The finger position xf and reference pitch
ms are set according to equal temperament. As discussed in
Section 3, dynamics set xb and vb to the somewhat-arbitrary
values specified in Table 3. Gradual changes of dynamics
(cresc. or decresc.) are assumed to be a linear interpola-
tion of xb and vb between the starting and ending dynamic.
If the pitch is one of the “basic finger” positions, then F ib
and K are set according to the parameters determined in
Section 4. If the pitch is between 1 and 6 semitones above
an open string, the parameters are linearly interpolated be-
tween those calibrated values. Finger positions higher than
6 semitones will have F ib and K set as the value calibrated
for 6 semitones.

When two or more notes are connected with a slur, the
bow direction does not change between notes. In particular,
vb does not alternate, and the interior notes have kb and
kv enabled. Two notes connected with a tie receive the
same treatment, with the addition that the second note of

2http://lilypond.org
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Figure 12: Musical notation understood

the enables ke. The bow direction can be specified with
downbow and upbow signs. These set vb as indicated, but
do not enable kb or kv. In other words, the bow velocity
returns to 0 at the end of each note, and each note begins
with a new F ib .

Staccato and portato articulations indicate that the note
should be shorter, but their exact musical meaning varies
based on historical period, composer, and even the musi-
cian’s personal style. We arbitrarily set a staccato note’s
duration to be 0.7 times the original duration (followed by a
rest which is 0.3 times the original duration); a portato note
is 0.9 times the original duration (again followed by a rest).
When these articulations occur within a slur, they behave
similar to two downbows in a row — the bow direction does
not change but the bow velocity decelerates to 0 at the end
of each note. A breath mark sets the previous note to 0.5
times the original duration (followed by a rest). In addition,
the note has the additional modifier kv. An accent indicates
that the note should be “stronger”. In our system, this is
interpreted as doubling that note’s F ib .

On a real violin, playing closer to the frog results in a heav-
ier bow (increased Fb), while playing closer to the tip results
in a lighter bow. However, this aspect of violin mechanics
is not included in the physical model, so these indications
are purely cosmetic for the video generation. The notation
“frog” sets the bow-contact point along the bow hair to 0.0;
“lh” (lower half) is arbitrarily 0.2, “mid” is 0.5, “uh” (upper
half) is 0.8, and “tip” is 1.0. Grace notes are implemented
by “stealing” duration from the previous note. The duration
of grace notes is fixed to be half of the notated duration;
this is a reasonable approximation of the usual interpreta-
tion musicians use for grace notes.

6. VIDEO OUTPUT
In order to allow users to easily visualize the musical per-

formances, we added computer animation using Blender3, an
open-source computer graphics suite which provides python
bindings, allowing us to automatically convert any set of
physical actions into computer animations. Using a physi-
cal model for the sound synthesis and animation allows the
final product to blend seamlessly, in contrast to sampling
approaches in which the animations are an entirely sepa-
rate process from the sound generation. We only have one
model (the violin in Figure 13); to create animations for
other instruments, we use alternate camera angles as shown
in Figure 1.

The bowing action places the bow on the string at position
xb, finding the location by linearly interpolating between the

3http://www.blender.org
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Figure 13: Close-up of violin animation.
The orange cones on the fingerboard indi-
cate finger positions; this violin is playing
a rolled A major chord. Video examples:
http://percival-music.ca/mm2013.html

two ends of the relevant string. The contact point along the
bow hair is found by linearly interpolating between the two
ends of the bow hair according to the position along the bow
hair given by the bow velocity.

The four strings are not oriented on a single plane; the
two inner strings are farther away from the instrument body
than the two outer strings. This displacement is necessary
to allow the bow to play each string without touching the
other strings. The bow hair must therefore be placed at a
different angle for each string. For each inner strings, the
angle is set to be parallel to the adjacent strings. For the
two outer strings, those angles are increased.

The video for each instrument in a string quartet is gen-
erated independently, then the images are concatenated to
copy the normal seating arrangement of a string quartet,
with violin 1 being in the bottom-left position and cello in
the bottom-right. The audio for each instrument is gener-
ated as a monophonic audio file, but are mixed together with
the instruments being panned linearly from -0.5 to 0.5.

7. DISCUSSION AND FUTURE WORK
The music created by our system is not suitable for most

commercial applications. While physical modelling has the
potential to allow more expressive music than than sampling-
based approaches, this comes at the cost of increased diffi-
culty of control, requiring highly skilled (virtual) musicians
to achieve high-quality musical performances. Professional
musicians require thousands of hours of deliberate practice
to learn their craft [11]. The feedback control in our system
does not completely replicate those years of training; the
final audio contains occasional harsh attacks and squeaks,
in a manner similar to the sounds produced by human stu-
dents with a few years of training. This may be a boon
for composers writing for student musicians, but most prac-
tical applications of synthesis would benefit from alternate
methods rather than our system at the present time.

We plan to quantify the perceived quality of our music.
We will perform a double-blind listening test, where par-
ticipants will judge two or more performances of the same
musical work. Participants will be asked to rank each perfor-
mance on two axes: the quality of the performance, and the
degree to which the performance is “human-like”. One per-

formance will be from our system, another from a commer-
cial notation software package, and additional copies from
any research projects which can create string quartet music.
If the latter is not possible, then we will compare music from
solo instruments rather than quartets. We will use estab-
lished metrics such as the Friedman test and the Wilcoxon
signed-rank test for evaluating the significance of our find-
ings. In case the listener’s musical background is a factor,
we will conduct the survey with two groups: string players,
and the general public.

There are a number of ways that we hope to improve
the control loops. The present system relies on users with
some amount of musical skill (≈ 1 year of violin lessons)
to judge whether the bow force Fb should be increased or
decreased. We would like to remove even this small amount
of background knowledge. Ideally, users would simply judge
whether the audio was good or bad, and the system would
determine the corrections required via more sophisticated
machine learning which track time or state such as Hidden
Markov Models and/or further calibration routines.

An alternate approach would be to deliberately imitate
specific performances; this follows real-life violin pedagogy.
Suzuki violin students are explicitly given audio recordings
so that they can learn from them by attempting to imitate
the recordings’ sound. In addition to audio timbre distance
metrics, such a system could involve video to estimate bow
velocity or even bow-bridge distance. This type of approach
was used by VocaListener and VocaWatcher [13] to create
performances with Vocaloid singing synthesis [17] and a hu-
manoid robot which matched a recording of a human singer.

The present system focuses on the low-level control, and
used hard-coded values for many expressive musical deci-
sions such as the length of staccato notes. Future work will
provide a GUI to allow users to easily modify such stylis-
tic decisions, allowing them to personalize the audio per-
formances. There is an active research community focused
on expressive computer music performances for piano music
[16], but in the immediate future our goal is to give humans
better/easier control over such decisions.

Finally, we will add vibrato (an oscillation of the left-hand
finger). This is a skill taught to musicians with 3–4 years
of experience, and will likely require some musical analysis
to suggest which note(s) should receive vibrato and which
notes should be played “straight”.

8. CONCLUSION
We have developed a method of synthesizing audio and

animated video from musical notation. Our method uses
no recorded samples from musicians, instead using physi-
cal modelling and supervised machine learning to generate
audio. This allows new instruments (e.g., a second distinct-
sounding violin) to be added to the system with minimal
effort. The machine learning and calibration routines are
sufficiently flexible to apply to 4 violins, 2 violas, and 2 cel-
los with no manual tuning of constants.

To foster future research in this area, all code and data is
available4 under permissive copyleft licenses.
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