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Abstract

Learning to play a musical instrument is a daunting task. Musicians must execute
unusual physical movements within very tight tolerances, and must continually adjust
their bodies in response to auditory feedback. However, most beginners lack the
ability to accurately evaluate their own sound. We therefore turn to computers to
analyze the student’s performance. By extracting certain information from the audio,
computers can provide accurate and objective feedback to students.

This thesis lays out some general principles for such projects, and introduces tools
to help practicing rhythms and violin intonation. There are three distinct portions to
this research: automatic exercise creation, audio analysis, and visualization of errors.
Exercises were created with Constraint Satisfaction Programming, audio analysis was
performed with amplitude and pitch detection, and errors were displayed with a novel
graphical interface. This led to the creation of MEAWS, an open-source program for

music students.
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Certain musical terms have specific meanings in Computer Music which may be

counterintuitive to musicians.

Performance: the act of producing sound. To a musician, this term implies a certain
level of skill or the existence of an audience (i.e. “a concert performance”);
in this thesis, the term applies to any sound production (i.e. “the drunken

bassoonist grabbed a violin and performed a Sevéik exercise”).

Transcription: the process of determining the notes and rhythms in a performance.
The production of sheet music (“engraving”) or printing physical output is not

required.
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Preface

As is always the case with children and parents, I did not realize how lucky I was to
have the parents I did while I was a child.

Such a statement could go in many directions, but in this case I am referring to
their help while I learned cello. Mom tuned my instrument before I practiced (with
Dad assisting when the pegs got stuck and required force), and monitored my daily
practice for the first 6 years. She corrected my intonation, played the piano, and
generally ensured that I was improving during my daily practice.

I didn’t appreciate how useful this was until twenty years later, when I started
teaching cello myself. I saw my students once a week. I tuned their instruments
— sometimes with strings that were a major third out of tune — and carefully lis-
tened to their scales, pointing out glaring intonation mistakes. And six days a week
they practiced on instruments which were horribly out of tune and without anybody
who could check their intonation. In other words, they spent six days out of seven
reinforcing bad habits.

This is not to blame the students or their families — unless a student has perfect
pitch, it takes years to develop the ear training necessary to judge string instruments
like the cello. At the time, I recognized the problem, but considered it insolvable.

The second inspiration for this thesis came a few years ago at a summer music
camp for amateur musicians. I was playing violin in a string quartet, and the cellist
— as it happened, a professor of Computer Science (although not in my area) — was
struggling to play his solo. The rhythm switched between duple and triple time, and
it always threw him off.

This was hardly the first (or the last!) time that I'd played with an amateur
musician who had difficulty with something that I found trivial, but this particular
case left a lasting impression on me. In part because my first instrument was the
cello, and this was one of the first times I had played something other than cello in a
string quartet. But mostly because I knew that he was neither an idiot nor lazy — he
spent far more time practicing than I did. He listened to recordings, he tried clapping

the rhythms, he tried mouthing two- and three-syllable words as he played... in the
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end, the quartet simply followed whatever rhythm he played at that point, and fixed
the tempo a few bars later. However, this problem stayed in the back of my mind
— even intelligent, hard-working amateur musicians could have enormous difficulty
evaluating their performance.

The third inspiration came one month after beginning this degree. I was attending
ISMIR 2006 (International Conference on Music Information Retrieval), and one of
the speakers was describing how he became interested in music transcription. A few
years ago, his neighbor’s six-year old son began learning violin, and the speaker was
horrified at the sounds that he heard — “they were not music!”. So he asked himself,
as somebody skilled in digital signal processing, if there was anything he could do to
improve beginning violin students.

I was quite impressed by his courage — knowing nothing about playing the violin
or teaching music, here was somebody working to improve the education of millions of
violin students with non-musical families. With all my expertise in playing, teaching,

and conducting string instruments, how could I do anything less?
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Chapter 1

Introduction

This research focuses on the practical aspects of learning a musical instrument and
how they may be improved with Computer-Assisted Musical Instrument Tutoring
(CAMIT) software. Beginning music students face four challenges: learning musical
theory, learning the theory of playing their instrument, developing the muscle control
to play their instrument, and developing the ability to listen and judge the correctness
of their sound. The first two challenges are theoretical, while the latter two challenges
are practical.

The focus on practical challenges should not be taken as suggesting that theo-
retical challenges are trivial, either for students or teachers. Learning how to read
sheet music or memorizing hundreds of folk tunes is certainly difficult, and learning
how to play stylistically and beautifully is a life-long task. However, the theoretical
challenges are relatively well understood. Educational software aimed at teaching
students how to read sheet music has been around for decades. Such software is
certainly not perfect, but there are many other researchers investigating this area. In
addition, teaching the academic side of music is not terribly different from other aca-
demic subjects. New advances in computer-aided education teaching math or history
can probably be applied to teaching music theory relatively easily.

In contrast, few researchers working on CAMIT software focus on the practical
aspects. Playing a musical instrument involves quite unnatural movements, with
very little tolerance for deviations while performing them. Most mistakes made by
music students are caused, directly or indirectly, from insufficient muscle control —
either failing to move their bodies as intended, or concentrating so much on their
body movements that they lose track of the music. In such cases, the student does
not need a review of the theory; they merely need to practice the exercise again to
improve their muscle control.

This thesis is divided into five chapters:
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Chapter 1 Introduction explains the motivation and general principles behind
this research. It explains the particular difficulties of learning musical instru-
ments, lays out some guidelines for effective future work in this area, and ex-

amines related work.

Chapter 2 Creating Exercises shows how exercises for students were created us-

ing simple music representations with Constraint Satisfaction Programming.

Chapter 3 Exercise Analysis shows how student performances were transcribed
from audio into musical information, and how that musical information was

graded.

Chapter 4 Game Design and Visualization explains the design of the rhythm
and violin intonation games, and how the result of the analyses were presented
to the students.

Chapter 5 Conclusion and Future Work contains some final remarks and plans

for future work.

1.1 Difficulties in Learning Musical Instruments
This section examines particular challenges faced when learning a musical instrument.
1.1.1 Athletics and Verification

The practical side of learning how to play a musical instrument is quite different from
learning academic subjects like math or history. The difference boils down to two
factors: athletics and verification.

Non-musicians are often surprised to hear the terms “athletic” and “musicians”
together, but musicians are highly-trained athletes. Their training is not primarily
directed at raw strength or endurance, but is instead focused on muscle control.
Musicians must control parts of their bodies very precisely. If a violinist’s finger is 3
millimeters too high or low, we hear an out-of-tune note. If a clarinetist’s lip pressure
is too loose or too great, we hear a breathy whisper or no sound at all.

To illustrate the difficulty of muscle control, try performing a simple experiment.
Place the finger-tips of your left hand on a table. Now shift your hand so that your
index finger is touching the table exactly where your ring finger was touching. The
new finger should be accurate to within 3 millimeters. Now shift your hand back to
its original position — again, your finger should be within 3 millimeters of the position

of the previous finger.
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Can you perform this exercise quickly? Moving your hand should be completed
within a tenth of a second. Can you perform this exercise without looking at your
hand? Can you move your right hand smoothly in a line in the air while your left
hand performs these fast — yet accurate — movements? This is the kind of muscle
control which violin students must learn in their first year. The difficulty is not
knowing what to do, but simply in controlling one’s body.

As we perform this experiment, we notice a second difficulty: verification. If we
do not look at our left hand, how can we tell if our new finger is in exactly the right
position? In this case, our experiment was harder than a real-life violin lesson: when
we perform these movements on a violin, the position of our hand determines the
pitch. If our finger is in the wrong position, the pitch produced by the instrument
will not be correct.

The difficulty of verification now becomes one of hearing. Almost all humans have
the ability to distinguish different pitches, but the accuracy varies widely. With the
exception of medically “tone deaf” individuals, all humans can recognize that 10,000
Hz is a higher sound than 100 Hz. On the other side of the scale, no human can
recognize the difference between 440 Hz and 440.01 Hz; this is far below the just
noticeable difference.! To be recognized as playing “in tune”, the musician’s margin
of error must be less than the audience’s ability to detect pitches.

The previous paragraph was directed at stringed instruments such as the violin,
but the problem of verification is true of all instruments. Instruments which have
fixed pitch (such as the piano or drums) still have variable rhythm. For example,
consider an exercise as simple as playing Figure 1.1. The rhythm is clear: for example,
if one plays the initial C for 2 seconds, then the D and E should be 1 second each,
and the F should be 4 seconds.

0
o — -
4
'y, |

¢

Figure 1.1: A very simple melody.

In practice, nobody plays rhythms so strictly — quite apart from the non-musicality
of playing in strict “metronome time”, no human can judge whether a note was 0.001

seconds too long or short. However, if a note is 1 second too long, we definitely will

LOur ability to distinguish pitches varies enormously with the timbre, tonal context [26], and
whether we hear the tones simultaneously or successively, but most studies suggest that we cannot
perceive pitch differences below 5-6 cents for sequential notes such as played by a beginning violin
student [24] 5 cents higher than 440 Hz is 441.273 Hz.
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notice a problem. To be recognized as playing the rhythm “correctly”, the musician’s
margin of error must be less than the audience’s ability to detect such errors.

The practical difficulty for beginning music students is now clear: they require
hours of practice to control their bodies, but they cannot even judge if they are

performing their exercises correctly or not.
1.1.2 Description of Daily Practice

To improve our understanding of the challenges faced by music students, we shall
describe ther daily home practice. This description is typical for classical European
instruments such as violin, oboe, or piano. Some portions of this daily routine may
be omitted for certain instruments, but the basic framework is the same.

The practice session begins by playing scales. The purpose of playing scales varies
based on instrument; goals include intonation (producing the correct pitches), speed,
and good sound quality in all ranges of the instrument (high notes and low notes).

Scales are followed by technical exercises. These are generally quite short; many
exercise are between two and ten seconds, but there are a large number of exercises
to be played. These exercises are rarely “musical” (aesthetically pleasing); they
are the instrumental equivalent of weight training. Many technical exercises involve
playing notes very rapidly with accurate intonation, some involve playing notes which
are quite distant, and other exercises simply ask the student to play a long note
with steady pitch, loudness, and tone quality. Depending on the seriousness of the
student and the teacher’s approach to music education, these technical exercises
may be omitted entirely — very few students enjoy performing these exercises, and
many teachers consider fostering an enjoyment of music to be more important than
improving a student’s ability as quickly as possible. The analogy to weight training
is also applicable here: if one simply wishes to play team sports for fun, weight
training is not necessary; if one wishes to play competitively, extra physical training
is required to improve quickly.

Next a student will play a ‘study’ or ‘étude’. These lie somewhere between tech-
nical exercises and normal piece of music: each study is specially composed to stress
certain technical skills (playing high notes, producing a certain kind of sound, etc.),
but a study is musical. Studies are also much longer than technical exercises; most
are between one and ten minutes long.

Finally, a student will begin playing pieces of music. Depending on the student’s
age and ability, there will generally be two to five pieces of music. The teacher will

often ask the student to pay particular attention to a few challenging parts, but for
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Figure 1.2: Schematic of feedback cycles in daily practice.

the most part the student must do her best to improve her performance by herself.

At every stage of this daily practice, the student should be analyzing her own
performance as shown in Figure 1.2. There are two feedback cycles: realtime and non-
realtime. In the realtime feedback cycle, the student is performing tiny adjustments
to her body in response to the sound — adjusting fingers, lips, air flow, etc. After
a student has finished playing, she must decide whether to continue practicing the
same material (and if so, what part(s) she should fix next), or whether to move on
to new material (another exercise, another piece of music, or cease practicing).

In her previous lesson, the teacher will have pointed out a few mistakes of the
student, and directed the student to correct these mistakes. However, the student
should not simply correct the mistakes mentioned. Due to constraints on time (and
the student’s concentration), teachers only mention a small fraction of the mistakes
they notice. If a student has fixed the mistakes discussed in the previous lesson, she
should look for other mistakes to fix. In addition, the student may have developed
new mistakes in the time between lessons. Another problem is that the mistakes
discussed in the previous lesson are not always obvious to the student, even once the
teacher has discussed the issue.

For example, suppose that the student was warned that she always played a
certain note too high. In some cases — particularly with advanced students — the
student can fix the mistake herself. However, less experienced students may lack the
ability to hear the difference in pitches. The student may honestly believe that she
played the note at the correct pitch when in fact it was extremely out of tune. When
the teacher is present, she may analyze the student’s sound and notify the student
of mistakes, but without the trained ears of the teacher, the student is helpless to fix

the mistake.



1.2 Goals of CAMIT projects

Before beginning work on any complex system, we should have a clear concept of
the goal(s). This section will examine potential goals and discuss which goals will

produce the greatest ratio of student help for researcher effort.
1.2.1 How Computers Could Help

There are three potential goals of CAMIT projects: enhancing the teacher’s lesson
with the student(s), enhancing the student’s individual practice, and motivating the
student. Most projects will pursue two of these goals (i.e. motivation and either
enhancing lessons or enhancing individual practice), but in some cases it may be useful
to pick a single goal. For example, when dealing with highly-motivated students
(either competitive teenagers or adult beginners) the problem of motivation might
not arise. Some students may even consider extra “motivation multimedia”’ (e.g., a
talking dinosaur, a bouncing smiley face, a game defending the earth against an alien
invasion) insulting, and may prefer a CAMIT project which allows them to disable any
extra “motivational multimedia”. Conversely, for some students (intelligent, talented,
but easily bored) motivation may be the only problem that needs addressing. They
may be perfectly capable of learning by themselves and correcting their own mistakes,

but may lack the willpower to actually sit down and play their instrument every day.
The teacher’s lessons

The study of computer-assisted music education is relatively young, but it is unlikely
that human teachers will be replaced in the foreseeable future. Teaching humans —
especially children — requires a mixture of subject-specific knowledge, communications
ability, psychological skills, and creativity. In addition to evaluating a performance
and deciding which mistakes to discuss, a teacher needs to evaluate the student’s
mood and interest level. If a young student is feeling discouraged, it may be desirable
to compliment the student’s performance regardless of any problems, and suggest a
new piece of music to work on. Conversely, a perfectionist student may prefer to
continue working on the same piece of music much longer than other students. Until
we have developed artificial intelligence which can evaluate a child’s mood based on
her body language, we should be thinking of ways to enhance the lessons of human
teachers, not replace them.

Using technology to enhance music lessons is nothing new. Some teachers use
mirrors so that they can easily monitor the student’s movements from multiple angles

(or use the same mirrors to demonstrate their own movements to the student). Many
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teachers use recording devices (cassette tapes, minidiscs, or computers) to record their
students and then play the student’s performance with the teacher’s commentary.
We can easily apply these same examples to educational multimedia. Instead of
setting up a single mirror so that a student in the same room can view the teacher’s
demonstration, we could set up multiple video cameras so that the demonstration
can be viewed by many students in various geographic locations and potentially tens
of years in the future. We could further improve our archiving of performances by
using body sensors of the kind used by some dancers to produce computer animation
[38]. The resulting data can produce a computer animation which may be viewed at

any position, angle, or speed.
Individual practice

The vast majority of a student’s time with their instrument is spent on individual
practice. Individual practice is less effective than lessons with a teacher, but due to
economics and practicality, most students have one lesson per week. The effectiveness
of individual practice is therefore absolutely vital to a student’s progress. Effective
individual practice is particularly difficult for young children; for this reason, several
approaches to music education (notably the Suzuki method) stress parental involve-
ment in lessons and supervision of home practice.

There are a number of existing technologies to improve the effectiveness of in-
dividual practice. Two early inventions were the tuning fork (a metal device which
vibrates at a fixed, known frequency) and the metronome (a device which plays a
sound at regular intervals; generally between 30-240 beats per minute). In the late
20" century, electronic tuners replaced tuning forks — students could see an electronic
device’s estimation of their current pitch, displayed along with pitches of nearby notes.

With multimedia computer programs, we can significantly improve on these old
technologies. Instead of comparing pitches (audible pitch vs. pitch of nearby real
notes) at individual moments in time, we could compare the pitches in an entire piece.
A student could perform an exercise, and a computer could compare the student’s
pitches with the expected pitches. The computer could then highlight the three worst

notes and inform the student, who would then perform the exercise again.
Motivation

Humans are immensely lazy creatures. We are also very creative; this is an unfortu-
nate combination. We are extremely skilled at finding excuses to avoid anything that
resembles work, such as practicing musical exercises, fixing mistakes in said exercises,

or even taking our instruments out of their cases.
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Some people may consider student motivation to be outside the specific area of
computer-assisted music education; motivation is a general problem in education
and “edutainment” computer programs. There are certainly many problems we can
research without regard for motivating students — multimedia analysis, creating mul-
timedia feedback for students, etc. However, the single most useful factor in any
practical multimedia system for students is motivation. If students could be moti-
vated to play their assigned musical exercises every day, that would prove more useful
than even the fanciest multimedia feedback systems.

There are many ways to motivate students; first we must identify our target
audience. For young children, it might be appropriate to display brightly-colored
stars. Older children may enjoy the notion of “gaining experience” and “going up
levels” — possibly within the framework of a game where the user is attempting to
save a princess or defeat an evil wizard. If the target is adult males, then perhaps the
ability to compare their scores competitively with other users on the Internet would

motivate them to practice their scales.
1.2.2 How Computers Should Help

Although there are a few ways that multimedia tools may enrich the lessons of a
teacher, computer research in this area is likely to be less effective than work in the
other two areas. First, the time a student spends with a teacher is far exceeded by
the time spent without one. Many teachers suggest that their students spend an
equal amount of time in daily practice as they do in lessons (i.e. a one-hour weekly
lesson would result in one hour of daily practice). Depending on the seriousness of
the student, the practice time may be double or even quadruple this amount (i.e. a
one-hour weekly lesson would result in four hours of daily practice). Second, music
teachers are already investigating this area. As new technology becomes available,
some music teachers incorporate it in their lessons. Such “teacher-driven” innovation
will likely be customized to that teacher’s specific teaching style, and therefore will
be used much more than an externally-created CAMIT project.

The question of motivation is a current area of research in departments of Educa-
tion — and in the design of computer games. It is to the latter area that we wish turn
turn: millions of children and adults spend hours each day playing computer games.
Many game-players even pay a monthly fee to play online games. If we could design a
computer-assisted music education program that was half as addictive as the leading
Massively-Multiplayer Online Role-Playing Game (MMORPG), this problem would

be solved.
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In contrast, there is relatively little attention focused on individual practice. Mu-
sic students rarely use technological aids — they may use a tuning fork or electronic
tuner at the beginning of a session to tune their instrument, and they may occasion-
ally use a metronome, but those are infrequent. Many music students find it difficult
to accurately judge their own performance. This is quite problematic because, as
the famous phrase goes, “practice makes permanent”. If a well-meaning child spends
90% of her time practicing mistakes, her teacher will have a hard time correcting
those mistakes.

There are a few reasons for the difficulty of self-analysis. To some extent this
is a physical difficulty — the location of the musician’s ears compared to the audi-
ence’s ears. In addition, controlling an unfamiliar musical instrument requires a vast
amount of concentration; beginners simply have no cognitive power left to listen to
their sound, let alone critically analyze their performance. With more experience,
instrumental control becomes subconscious (much like learning how to walk or drive
a car), but this process takes years. We can avoid the physical problems (location
of ears, and concentrating on physically controlling the instrument) by recording a
performance and listening to the result, but this would double the time spent on
individual practice. Most students are not willing to do this on a regular basis.

However, the primary difficulty in self-analysis lies in the student’s inexperience.
Music students lack the ear training that professional musicians have; a student may
not notice subtle errors in the sound, or even if they are aware of the presence of an

error, they may be unable to pinpoint the source.

1.3 Enhancing Individual Practice

In Section 1.2.2, individual practice was identified as the most important area for
computer enrichment, and in Section 1.1.2 the activities that take place during indi-
vidual practice were examined. Given the discussion so far, there are two areas that
would benefit the most from multimedia computer programs: computer analysis to
provide objective self-testing tools, and motivation to practice technical exercises.
We suggest focusing on technical exercises as an ideal candidate for both tasks.
Since each exercise has a specific purpose, the computer analysis is much easier. We
can develop algorithms to analyze sound for the particular features that are being
tested in each particular exercise. Analyzing a five-second audio file for one or two
features (such as pitch stability or a gradual increase in amplitude) is much easier
than analyzing a five-minute piece of music to find all musical mistakes. This also

simplifies the task of giving feedback, since the student is expecting only one or two
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metrics about their performance.

Computer analysis of technical exercises is also easier to verify. If we give the
recorded audio of three students playing a piece of music to three music teachers, we
will receive three (or more!) different opinions about which problems the students
should work on. In these cases, it would be very difficult to demonstrate that a
computer analysis of the performance was accurate. On the other hand, if we give
recordings of a technical exercise, and ask the teachers to rank the students’ intona-
tion ability, the teachers will probably rank the students in the same manner. In this

case, we have a clear goal for our computer analysis.
1.3.1 Motivating exercises: Educational games

In addition to having a clear focus for each computer analysis tool, technical exercises
have the greatest need of the extra motivation and ‘fun’ that multimedia tools can
provide. Here we shall examine three successful educational games which provide

inspiration for musical edutainment projects.
Project LRNJ: memorizing Japanese kana

LRNJ [20] is a simple downloadable game which teaches users the Japanese alphabets
(hiragana, katakana, and kanji), shown in Figure 1.3. The game is basically a simple
flash-card memorization tool: it displays a character and asks the user to type its
English equivalent (for hiragana and katakana) or the meaning (for kanji). If the user
guesses incorrectly, the game displays the correct answer, and asks another question.
However, this game ‘dresses up’ these flashcard questions in the guise of a 1980-style
role-playing game. Slime monsters have kidnapped the princess of the kingdom, and
the user (playing a poor farmer called Jenk) must rescue the princess. Jenk must visit
towns, talk to villagers, and fight slimes. But instead of simply attacking a slime and
inflicting damage (as is customary in RPGs), the user is presented with a Japanese
character. If the user correctly identifies the character, then the slime is damaged or
killed; if the user makes a mistake, the slime is healed.

By wrapping a boring task (memorizing over a hundred characters, in addition to
nearly two thousand kangi) in the guise of a nostalgic computer game, the task be-
came much less tedious. I had previously attempted to learn hiragana and katakana,
but having very little patience for pure memorization, had given up after only five
minutes. When I discovered LRNJ, I played the game continually for six hours.
It should be emphasized that the true value of LRNJ lies not in any sophisticated

interactive tutoring system; it was the extra motivation.
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d nhesting in the evening
un is in the west).

Figure 1.3: Screenshot of LRNJ testing kanji recognition.

LOOM: a musical adventure computer game

LOOM [44] was an innovative adventure computer game created by LucasArts, pub-
lished in the early 1990s and shown in Figure 1.4. In this adventure game, the main
character is a Weaver, a person who can cast spells by performing short melodies.
Some melodies may be read in books, but others must be learned from the environ-
ment. For example, to learn the “see in the dark” spell, the user must listen to the
song that an owl sings, then replicate the notes. Certain spells must be cast in order
to progress through the game — for example, the player cannot navigate a maze in
the dark without casting the “see in the dark” spell.

At the time, microphones and sound cards were very rare. Melodies were per-
formed by typing note letters on the keyboard, such as “C G E G F E D C”. The
musical training here was simply interval recognition ear training, but by presenting

this task as an adventure game, it became more amusing.
Guitar Hero and Rock Band: graded performance on fake instruments

The Guitar Hero series of games [43], as well as their predecessors Frequency and
Amplitude, are musical games for gaming consoles. The basic premise is similar to
karaoke: the user must ‘perform’ certain preset songs. In the earlier games, this
performance was created with the standard console game controller; with the Guitar

Hero games, the user plays on specially-made mock guitars.
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Figure 1.4: Screenshot of LOOM; only three notes (CDE) are available. As the game
progresses, more notes are unlocked.

The game Rock Band [45], released in late 2007 and shown in Figure 1.5, carries
this idea one step further. In addition to a mock guitar interface, gamers may use
a mock bass guitar, electronic drum pads, and a microphone for vocalists. From the
standpoint of music education, the addition of the drum pads and microphone are
particularly interesting.

Skills learned while practicing with the mock guitar do not translate to real gui-
tars. The guitar controllers do not have any strings; users must press buttons (ar-
ranged in frets) which are as wide as the instrument’s neck with their left hand while
performing a sweeping motion with their right hand. In the early difficulty levels,
users press only one button at once, but later levels require pressing multiple but-
tons. However, since there are no distinct strings, their fingers may line up completely
unlike on a real guitar.

In contrast, drum pads and the microphone offer actual musical training. Elec-
tronic drum pads are popular in real rock bands, so playing drums in Rock Band
develops skills which may be applied directly to a real rock band. Similarly, training
to sing the correct pitch with the microphone in Rock Band could aid in singing away
from the game.

Guitar Hero and Rock Band use an unusual form of music notation: a vertically

scrolling display. The actions to perform at each moment in time are displayed on
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Figure 1.5: Screenshot of Rock Band. The top portion shows the vocal pitches and words,
while the bottom portion shows the bass guitar, drums, and lead guitar notes from left to
right. For the bottom portion of the display, the notes scroll vertically from top to bottom.
Playing a note correctly causes it to flash.

horizontal lines; the user can see the upcoming actions for approximately two seconds.
Given that few rock musicians can read standard sheet music, inventing a new form
of notation was desirable. Although it is not as compact as Western sheet music and
does not adapt well to a fixed form (such as paper), it is quite appropriate for a video
game.

Both games feature less than one hundred pre-set songs, with an option to down-
load extra songs on some platforms. Rock Band has different difficulty levels for
different instruments; for example, the band may play one song with the singer on
Hard, the drummer on Easy, and the lead guitar on Medium. The ability to integrate
multiple difficulty levels while playing the same song is vital for such a party game:

a random collection of friends will likely include complete novices as well as experts.
1.3.2 A Game for Classical Instruments

Guitar Hero / Rock Band and LOOM both offer a clear vision of education games
for musical technical exercises. Instead of ‘performing’” music with a replica guitar,
why not perform it on a real acoustic guitar, oboe, or violin? Instead of typing “C
G F D” to cast a magic spell, we should have the user perform the melody on their
instrument.

We could easily add some practice / repetition to this task: suppose that the hero
in our adventure game must climb over a wall. She knows the “create ladder” spell,

so she performs the exercise (playing a steady pitch with constantly-rising amplitude)
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on her violin. The computer analyzes the sound and gives the user a score of 70%.
Instead of giving this number to the user as feedback, the game draws a ladder
growing from the ground — but stopping before it reaches the top of the wall. The
user must then perform the melody again — perhaps ten or fifteen times in a row
— until she receives an acceptable score and the ladder reaches the top of the wall.
Depending on the test, the user may even be required to score above 70% three times
in a row.

Designing the human-computer interface for such a game is a non-trivial task.
We do not want users to have their hands on the keyboard (as is the case with
LRNJ, LOOM, and many other edutainment games). Users should be playing their
instrument as much as possible. There are three options for input: we could use
a controller which does not require the user to release their instrument, we could
control the game via the sound of the instrument itself, or the game could have
distinct keyboard-controlling and instrument-controlling modes (hopefully with few
changes between the modes).

The advantage of using a controller such as a typical console game controller is
that the interface is easily recognized by our target audience. The buttons on the
controller (e.g., up, left, A, select) are easily mapped to the actions in the game. The
disadvantage of such a controller is that the user is not playing her instrument. A
one-handed controller minimizes this problem — the user could remove a single hand
from the instrument while still holding it, provided that the actions within the game
were short — but the problem remains. As an alternative, foot pedal(s) may also be
used — but this would require students to purchase such controllers.

We could also control the game via the sound of the instrument. By performing
pitch detection (and possibly the whole music transcription chain, involving onset
detection and note segmentation), we could control actions within the game. The
advantage is clear: the user is always playing her instrument, either by playing ex-
ercises to advance through the game, or simply providing audio commands to the
game. The disadvantage is that the game-controlling sounds are not very intuitive.
For example, consider the simple problem of moving a character within the game.
A high pitch could move the character up and a low pitch could move the character
down, but there is no intuitive mapping between particular sounds and left/right
movement.

In some genres of games, an unintuitive mapping between controls and game
actions may not be a problem. Many fighting games deliberately include “special

moves” which require complex patterns of key presses. For example, a character in a
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martial arts-themed game might throw a lightning bolt when the user hits left-left-
A-down-B-down-up. Why not use a violin sound to produce such moves? Normal
notes in first position could correspond to simple punches or dodges, while playing
chords in higher positions could create special moves. An out-of-tune note (or chord)
would simply not be recognized by the game. To force the user to use the whole
range of their instrument, we would limit each note to only one use — playing the
open E string would launch a simple kick, but if the player wishes to kick again, she
must play the same note an octave higher.

A third option would be to minimize user interaction in the game. One model for
this is the genre of “visual novels”, popular in Japan but very infrequent in North
America. After starting a game (perhaps involving typing a character name and
selecting a difficulty level), a story unfolds. At certain points, the user would be
prompted to perform an exercise. Based on the results of the exercise, the story pro-
gresses in a different manner. For example, if the story revolves around a high school,
when the main character attempts to invite a girl to dance the user is prompted to
play a two-octave Ff major scale on his violin. If the scale is badly out of tune, the
girl in the game slaps the main character. If the scale is in tune, the girl agrees to
accompany the character. If the scale is on the boundary, the girl may reply “I'm not
sure... ask me again!” and the user is given another chance to perform the exercise.

Although some of these ideas may seem silly (martial arts fighting with a violin?),
they are motivated by serious concerns. Many children spend dozens or hundreds of
hours practicing their game skills with video game controllers, keyboards, and mice.
Skilled gamers can perform incredible feats of dexterity with their hands. If we could
tap into this motivation and direct it towards musical instruments, students could
benefit immensely. If we can tie a reward (beating all challengers with a triple-
volcano-punch) to the player’s ability to shift between first and fifth positions on the
violin, some students will practice their shifts like never before.

As we saw in the discussion about the LRNJ game, edutainment software does
not necessarily need to include sophisticated analysis and teaching algorithms. Once
again: if students could be motivated to play their assigned musical exercises ev-
ery day, that would prove more useful than even the fanciest multimedia feedback

systems.
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1.3.3 Design Goals for Enhancing Individual Practice

There is a wide range of actual educational value in “educational games”. There is
a certain amount of trade-off? between “education” and “game”. When designing
an educational game, this trade-off must be kept in mind. Is the primary goal to
educate or entertain?

Some may object to the existence of a trade-off, arguing that “learning is fun!”.
There are two counter-arguments to this: first, the main problem with learning a
musical instrument is training muscle control. No matter how exciting and amusing
a music teacher makes the new lessons, at some point the students must practice
their physical exercises.® Second, if learning a musical instrument is so fun, why do
music teachers need to force students to practice their scales and exercises? Many
children choose to spend time playing computer games or watching television instead
of practicing their instrument.

When designing educational games whose primary purpose is to enhance individ-

ual practice, the following goals should be considered:

Focus: When the student is playing her instrument, she should be concentrating on

her instrument and the sound, not on the technology.

Reliability: A program which assigns grades to students should be as reliable as
possible. If a problem is detected while calculating the grade, the user should
be notified that the grade may not accurately reflect her ability.

Transparency: Users should be able to determine why the program produced the
output it did.

Simplicity: The exercises and algorithms used should be as simple as possible.

These goals are discussed in detail below.
Focus

No interactive tool should distract the student from listening to herself. Developing

realtime self-analysis skills — maintaining a constant feedback cycle between sound

2This mirrors the trade-off between security and usability. The two are not exact opposites, but
there is still some conflict between them. For example, locking and unlocking a car increase the
car’s security, but slightly reduces the ease-of-use by requiring the user to keep the car’s key. In this
case, the security benefit far outweighs the usability penalty.

3Some people may still argue that “physical training is fun!”, but the widespread use of mobile
music devices and televisions in fitness clubs suggests that many people do not find physical training
entertaining by itself.
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and action — is absolutely vital for playing a musical instrument. Most instruments
have variable pitch (even an instrument with relatively-fixed pitch, such as a saxo-
phone, can play bad pitches due to air flow) and immensely variable sound quality.
Music students must learn to adjust their bodies (be it fingers, arm positions, air
flow, lip position, etc) automatically in response to the sounds they produce.

Consider an analogy to a baby learning to walk. Standing on two legs is a remark-
able feat of balance; babies must learn to make thousands of tiny adjustments to their
bodies in response to sensations in their inner ear. Now suppose that we displayed
some colors on a computer screen for the baby — blue if the baby was leaning too far
forwards, red if they were leaning backwards, etc. A baby might learn to associate
the visual colors with her ability to remain upright, instead of using the sensations in
her inner ear. Once we remove the computer display, the baby would lose the ability
to walk.

For this reason, we suggest that realtime interactive tools should be used with
caution. In general, computer analysis and interaction should occur after a student
has finished playing her instrument. The computer should be used to confirm (or
correct) a student’s judgment, not as a replacement for realtime self-analysis. This
may come as a disappointment to researchers interested in pushing the boundaries
of digital signal analysis — realtime processing is much more challenging than offline
processing, after all — but realtime multimedia tools may be counter-productive if
used indiscriminately.

It should be clear that we suggest caution, not a complete ban. There are some
cases where it may be appropriate to introduce technological aids for short-term gain
at the expense of long-term development. For example, many violin teachers place
pieces of tape on the instruments of young students to show them where to place
their fingers — in effect, adding frets to a fret-less instrument. Although violinists
must eventually learn how to play without tape, many teachers feel that using tape
for a few months is a worthy trade-off. This belief is not universally shared; some
prominent violinists argue against using tape. In the same way, a particular realtime
computer program may be useful in the short term despite distracting the student
from concentrating on her sound.

There is one area which is safe for almost indiscriminate use of realtime tools,
however: technical exercises. As discussed in Section 1.1.2, these are short exercises
which are aimed at developing specific skills. A realtime visualization tool which
is used for specific technical exercises is unlikely to subvert a student’s long-term

development of her realtime self-analysis skills — especially since different technical
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exercises will probably use different visualization techniques. It is unlikely that a
student will use one particular technical exercise tool often enough that this tool
replaces her own ears.

Finally, it should be emphasized that our caution refers only to realtime inter-
active tools — programs which provide feedback to the student while the student is
playing their instrument. We have no concerns about multimedia tools which provide
feedback after the student has finished playing her instrument (i.e. in the “repeat
exercise or begin new exercise” part of Figure 1.2), even if this data is gathered via

realtime digital signal processing algorithms.
Reliability

Music transcription is a serious problem for CAMIT projects. Before a computer can
give feedback about a student’s performance, it must recognize music events in the
audio stream. However, we lack a general music transcription algorithm. We can
avoid this problem by using electronic instruments such as a MIDI piano keyboard.
Most previous work on CAMIT therefore focuses on piano — although even then,
our transcription is not perfect. Tracking multiple voices in highly polyphonic scores
remains problematic.

Violins and other orchestral stringed instruments have their own difficulties for
computer music transcription. Double stops, in which two notes are played simul-
taneously, are common; some violin sonatas include as many as six-note chords.*
Pitch-detection algorithms for multiple pitches are improving, but there is still work
to be done.

However, the biggest difficulty is note segmentation: where does one note begin
and the previous note end? Violins playing pizzicato have very sharp attacks and
exponential decays; violins playing piano espressivo have very gradual attacks and
almost no decay at all. Even humans have difficulty identifying the exact moment of
attack; an individual’s judgment of the perceptual attack time can vary enormously
[46], so it is no wonder that this remains an open problem.

If a problem occurs with the transcription, then a student’s grade will not ac-
curately reflect her actual ability. If possible, the transcription should include some
tests — for example, if the transcribed music does not contain the same number of

notes that the student was asked to play, a warning should be generated. A student

4These are found in advanced works, such as Ysaje’s 2"¢ violin sonata. Strictly speaking, a
violinist cannot play more than two notes at once. However, moderately skilled violinists can create
the illusion of playing three or four notes at once by “rolling” the chord; highly skilled violinists can
create the illusion of playing five or six notes at once using a similar technique.
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may play the wrong notes, and will almost certainly play notes out of tune, but

playing the wrong number of notes is quite rare.
Transparency

The CAMIT project should be more than reliable; it should be seen to be reliable.
If possible, the CAMIT project should be able to “show its work” if asked.

If we present music teachers with “black-box” software which assigns grades to
their students, they will (quite reasonably!) be suspicious. Suppose we develop
a general violin transcription program, feed it audio from two students, and then
announce that their grades were 68.3% and 92.6%. The first student may reasonably
ask for an explanation; if the software cannot justify why the first student received
such a poor grade, students and teachers will lose faith in the program.

Many music teachers are suspicious of software that claims to grade music. How
can a computer grade beauty, after all? How would a computer recognize the differ-
ence between expressive deviations from the expected rhythm and a student with a
very loose grasp on rhythm?

To counter this reasonable suspicion, CAMIT projects should be completely open
about how grades are determined. Teachers and students should be able to trace the
program’s behavior, from the basic audio, results of the transcription, intermediate
grading steps, to the final grade. After reviewing the program behavior a few times,
most users will be content to trust the program and will not bother to check the
intermediate steps — but having this ability is still necessary in order to justify that

trust.
Simplicity
“Everything should be made as simple as possible, but no simpler.”

- (attributed to) Albert Einstein

The notion of simplicity as a design goal in itself (“Keep It Simple, Stupid”)
is not new. However, it bears special discussion when applied to CAMIT projects.
Simplicity has practical benefits: it can increase the reliability and transparency of
programs, making it easier for non-technical music teachers and students to under-
stand how the CAMIT project determines the grades. Simple algorithms also reduce
the implementation time, allowing us to create useful CAMIT projects faster.

We should apply the principle of simplicity to our exercise design. As our attempts
to create a general music transcription algorithm become more and more complex, it

is worth taking a step back and asking ourselves what we really want to do.
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It is easy to see how the focus on music transcription came about: we want to
create CAMIT projects which help students practice, so we look at how students
currently practice, and attempt to create software which can analyze such perfor-
mances. In fact, less than a year ago I declared that “a CAMIT project that can’t

grade “Twinkle, twinkle, little star”®

is useless” to one of my supervisors. How-
ever, based on our discussion of technical exercises in Section 1.3, I propose that we
re-examine our approach to music transcription for CAMIT projects.

For example, suppose we wish to help students practice their rhythms. We there-
fore need to gather information about temporal events — specifically, where each note
begins and ends. What is the simplest method of detecting onsets? Simply examine
the audio samples directly; if a sample is greater than some value, we consider that
sample to be an onset. This onset-detection method fails miserably when given au-
dio from violins, but it works quite well for humans clapping. In order to use such a
simple transcription algorithm, we would need to ask our students to clap rhythms
instead of playing them on their violins.

Is this a reasonable request? As it turns out, classical musicians already do
practice rhythms by clapping. For some teachers, clapping is the first thing they ask
a student to do when that student has difficulty playing a rhythm on her instrument.
And invariably when a student cannot perform a rhythm on her instrument, she also
cannot clap that rhythm. Removing the instrument allows the student to concentrate
fully on the task at hand — learning a difficult rhythm — without extra distractions.
Clapping does not tell us where each note ends, of course. However, if the music we
are clapping does not contain any rests, then we implicitly know where each clapped

bREN13

“note” “ends” — it must end just before the next clap occurs.

We have now vastly simplified our CAMIT project. Instead of developing, imple-
menting, and testing a complicated note segmentation algorithm for violins, we can
rely on a decades-old algorithm (picking peaks directly from the audio samples) to
detect sudden loud noises.

The problem of detecting intonation can be simplified. Beginning violin students
do not play multiple notes at once, so we can use a simple monophonic pitch detection
algorithm. Note segmentation is hard because musicians can play the same note more
than once (such as the beginning of ‘T'winkle, twinkle’). If a musician never repeated
the same note, then note segmentation becomes simple: simply look for areas where

the pitch changes.

5This is the first piece of music in the Suzuki instrument method books, with which I learned
the cello.
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Is this a reasonable request? There is very little music which does not repeat
notes, so it is not as easily granted as our previous clapping simplification. However,
we are not attempting to analyze any arbitrary piece of music, but rather to create
a CAMIT project to help students practice their intonation. Do we need to grade
existing music? No. Can we create short exercises which test intonation, but do not
repeat any notes? This is definitely possible. In fact, since repeating a note does not
add anything to an intonation test, we would want our intonation exercises to avoid
repeated notes even if we could reliably perform general violin transcription.

Simple, small-scale targeted technical exercises are also less threatening to a music
teacher. We will be the first to admit that there is no chance of computers teaching
(and grading!) musical aesthetics in the next fifty years, so music teachers have noth-
ing to fear. However, some music teachers may still be nervous about this prospect
when presented with a general CAMIT project. In contrast, no music teacher will
feel threatened by a computer program which detects claps and compares them to

two bars of rhythmic music.

1.4 Related Work

A number of CAMIT projects have been attempted in the past fifteen years. Work
on CAMIT projects may be split into two categories: projects which have a narrowly-
focused goal, and projects which attempt to provide a complete learning environment
by providing a “virtual teacher” for the students’ private practice. A general survey

of the use of computers in music education is presented in [5].
1.4.1 Narrowly-focused projects

There have been many CAMIT projects which have a narrow focus. These projects
aim to provide one tool which music teachers may use to solve a particular problem.

An excellent example of this focused approach is the work of Robine et al [32].
Saxophone players (of any level of ability) were asked to play five notes — three notes
with constant loudness, one note which gradually became louder and then quieter,
and one note with vibrato. By analyzing the stability of pitch and amplitude of
these five notes, they could accurately predict the overall ability of each student
as determined by a professional saxophone teacher. This program may be used by
saxophonists to practice their control of airflow. This work is a good example of
using multimedia analysis to enhance technical exercises.

Many musicians consider chamber music to be the pinnacle of music: playing

music with a few other musicians allows the greatest combination of flexibility and
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structure. Oshima et al [29] make chamber music easier for beginning piano students
with their Family Ensemble software. This project provides an easy way to play
piano duets: non-musicians (such as parents or siblings of a student) may perform
the secondary part by arbitrary keys on a piano keyboard. The correct notes are
substituted for the secondary (non-musician) player, so this player needs only to play
the correct rhythm. In addition, score following techniques are used to compensate
for mistakes of the student. Although this work does not provide direct feedback
to the student, the extra motivation and sheer ‘fun’ of music it gives students is
extremely valuable.

Research is progressing in developing visualization techniques for music. Ferguson
et al [12] investigate ways to present multiple streams of data in a single, easily-
understandable display. In [11], Ferguson investigates using realtime sonification to
provide feedback to musicians. This may seem counterintuitive — the main focus of
a student should be her own sound — but with sufficient care, these techniques may
be applied in certain situations.

The PianoFORTE system by Smoliar et al [39] attempts to bridge the gap be-
tween simply playing the notes (which MIDI synthesizers can do beyond any human
ability) and performing music (by adding the tiny variations in tempo and dynam-
ics which makes music seem “alive”). The system provides visualizations for the
dynamics, tempo, articulation, and synchronization (between hands) of a piano per-
formance. This may be used to increase communication between teacher and student
by providing easily-viewable representations of these expressive parameters.

A review of four different real-time visual feedback programs for singers is pre-
sented in [16]. Some programs displayed only pitch, but others provided feedback
about vowel identity and timbre, the latter two aspects being derived from the sound
spectrum and amplitude. The most interesting finding is that the amount of infor-
mation given affects varying skill levels in different ways. This research found that
untrained singers benefited the most from a plot of their pitch, while trained singers
benefited the most from a keyboard display in which their current pitch is indicated
with a highlighted key.

1.4.2 General projects

There are a few large CAMIT projects which aim to provide general instruction: the
student plays a complete piece of music, the computer analyzes the performance,
and then provides feedback. These systems are primarily intended for self-learning

or distance education.
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The first major such project was Piano Tutor [8, 9]. This project used score-
following software to analyze a student’s performance, then used an expert system
to judge which mistakes were in greatest need of help. The system then used a
combination of graphics, voice, and video to inform the student of these mistakes and
how to correct them. The system could also choose simpler tasks for the student,
so that students could concentrate on improving specific skills which need help. By
using MIDI piano keyboards, researchers avoided the problem of transcribing music
and focused on discovering techniques for creating interactive learning tools.

The IMUTUS project [37, 14, 36] is the spiritual successor to Piano Tutor. It
is designed to be a complete, autonomous tutor with no human teachers (although
the authors note that it will be more successful when used in conjunction with a
teacher), but in this case the target instrument is the recorder. This system operates
by providing feedback after each performance: the system prioritizes mistakes based
on discussions with over 40 recorder teachers. For example, mistakes in articulation
are less important for beginning recorder players than control of air flow. To avoid
overwhelming the student, the system informs the student of only a few mistakes.
Students may also request hints to view extra annotations made by teachers. This
project has now ended, but similar work continues with the VEMUS [18, 13] project,
now investigating other wind instruments.

i-Maestro [17, 28] also provides an interactive self-learning environment, but this
project is also investigating the user of new gesture-based interfaces. An elaborate
framework of server software, client software, music exercise authoring tools, P2P
techniques, and 3-D motion capture visualization software is planned, to allow stu-
dents to learn more effectively. This project is still in progress; we look forward to
reviewing the project’s results.

The Digital Violin Tutor (DVT) [47, 19] provides feedback in the absence of human
teachers. DVT offers different visualization modalities — video, “piano roll” graphical
displays, 2-D animations of the fingerboard, and even 3-D avatar animations. DVT
consists of several interconnected modules. The student’s audio is transcribed and
compared to the transcription of the teacher’s audio. If mistakes are detected, then
the proper actions are demonstrated by the 2-D fingerboard animation, video, or the

3-D avatar animation.

1.5 Conclusion

We have discussed the difficulties of learning a musical instrument: practicing the

physical motions requires a large number of correct repetitions, but most students



24

cannot judge whether they have performed those actions correctly. Computers can
provide objective analysis in the absence of music teachers.

Computer assistance for practicing technical exercises would be particularly ef-
fective. Such exercises may be analyzed without the use of complicated music tran-
scription algorithms, allowing more resources to be spent on the exercise design and
visualization, rather than the digital signal processing. We identified four design

goals for developing CAMIT software: focus, reliability, transparency, and simplicity.
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Chapter 2

Creating Exercises

Generating technical exercises for various levels of playing ability is important for any
instrument method book. Technical exercises are short exercises aimed at a particular
skill, such as playing long quiet notes or shifting smoothly. These exercises make no
attempt at being musical or aesthetically pleasing in themselves; students should
focus on the particular skill under development, rather than focusing on aesthetic
concerns. To draw an analogy to sports, technical exercises are like weight training.
They do not require any strategy, offer little or no entertainment value, do not involve
any team-work — but they are the best way of strengthening muscles.

In some cases there may be only one or two exercises, but most of the time
students are given a large number of exercises to practice. These exercises differ only
slightly from each other, and are organized into levels of increasing difficulty. Writing
these exercises by hand can be quite tedious.

This is particularly apparent when we consider CAMIT projects, which could
benefit from a library of thousands of exercises. Such a collection would be impractical
as physical sheet music, but could be easily duplicated and distributed in digital form.
This library could be used to pick material which addresses the specific weaknesses
of students — there could be hundreds of exercises simply devoted to strengthening a
violinist’s fourth finger or switching between registers on a wind instrument. Another
use of a large library of exercises is to practice sight-reading. “Sight-reading” is the
term for playing a piece of music without previously hearing the work or reading the
sheet music in advance. Since each piece of music can be sight-read only once, a large
collection of pieces would be needed to practice sight-reading on a regular basis.

To generate a large collection of technical exercises, we therefore turn to Computer-
Assisted Composition (CAC) and constraint programming. By expressing the desired
characteristics of exercises for each level as a constraint satisfaction problem, a com-

puter can generate thousands of exercises in a matter of seconds.
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2.1 Constraint Satisfaction Programming

Modeling compositional tasks with constraint programming is not new. A Constraint

Satisfaction Problem (CSP) is defined as a tuple consisting of:

e a finite set of variables,
e cach associated with a finite domain,

e a set of constraints which restrict the values that the variables can simultane-

ously hold.

The task is to assign each variable a value in its domain while fulfilling all constaints.

A good introduction to CSPs is presented in [41]. There have been a few gen-
eral CSP systems for music composition, including PWConstraints and Situation [2],
OMClouds [40], and Strasheela [1]. Specific CSPs have been created; these include
rhythmic patterns [34] and instrumental writing [23]. However, these efforts have

focused on artistic, rather than pedagogical, goals.

2.2 Creating Rhythmic Exercises

Most musicians have an intuitive sense of what makes a rhythm easier or harder
to perform. However, we cannot teach human intuition to a computer — before we
can begin creating rhythms with CAC, we must formalize our concept of “easy” and
“hard” rhythms. A secondary goal of our formalization of musical knowledge is to
keep the mathematics simple enough for interested music teachers to understand —
both so that they feel more comfortable using such automatically-created exercises,

and so that they may define their own new exercise levels.
2.2.1 Rhythmic Difficulty Levels

Consider music as a series of events. An event represents the beginning of a note
or rest, regardless of its duration (see Figure 2.1). If this rhythm is clapped (a very
common way to practice rhythms), the two bars will sound identical. However, the
second bar is harder to read, due to the quarter rest spanning the second beat. In
the first bar, there is an event on each beat; this is very useful for students.

Using the terminology of events and durations, different rhythmic difficulty levels
can be expressed quite concisely. Table 2.1 shows the levels of rhythmic difficulty
used in this thesis. Each level is defined independently, so they may be re-ordered
or modified if desired. The rhythmic exercises are quite short: one bar in 4/4 time,

which is repeated to create two bars.
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music AZJ 7 ) g % L'—oh g ) g : L'
o R D I T D R D B A I A
events ¥ * %k % ® ok k% SR *

Figure 2.1: Sample rhythm. Time: thick blocks show beats, while thin lines show the
eighth note off-beats. Events: a star indicates an event in this position.

The ‘tatum’ (“Temporal Atom”) [4] column represents the number of events into
which each quarter-note beat may be divided. For example, to represent sixteenth
notes, each beat must be divided into a multiple of 4, and to represent triplet eighths
each beat must be divided into a multiple of 3.

Table 2.2 shows the total number of rhythms on each level. In many cases,
these rhythms include rhythms which were solutions to some previous levels — for
example, level 2 rhythms include all level 1 rhythms, and level 4 rhythms will not
necessarily contain any rests. For some applications this may be desirable, but for
other applications we may wish to generate only rhythms which specifically include
new material. We call these “interesting” or “new” exercises. We therefore introduce
extra constraints which exclude uninteresting solutions — for example, level 2 must

contain some sixteenth notes, and level 4 must have some rests.
2.2.2 Implementation notes

We used Strasheela [1] and its underlying language Oz [33] to phrase rhythmic exer-
cises as a CSP, and generated sheet music with GNU/LilyPond [27]. Oz is a multi-

paradigm programming language, including functional and constraint programming.
Music Representation: Events and Durations

To express a problem as a CSP, we must state what the variables are. Most musical
CSPs specify the number of notes at the outset, but this is problematic for more
advanced rhythms. One beat may be filled with anywhere from zero (if this beat falls
inside a long note) to eight notes (if we allow thirty-second notes).

We therefore create a list of all possible event positions, where each variable
represents which event occurs in that position (the “event list”). For example, to
produce one bar with notes as fast as eighth notes, we create a list of 8 variables.
Each variable represents one possible event — these correspond to the time positions

in Figure 2.1.
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Level | Durs.  Tatum Events constraints Example

0 : 1 Must have an event on %J_J_J_J_|
every beat, and no rests.

1 411% 2 Must have an event on 4 J J J ) |
every beat, and no rests.

2 | i3e 4 Must have an event on Mj_m
every beat, no rests, and
each beat is divided into
equal durations.

3 }1%% 4 Must have an event on m_m]_'
every beat, no rests, and
% must occur in pairs
replacing an %.

4 }Lé 2 Must have an event on 4 I J 2 J . o |
every beat, and rests can
occur only on beats.

5) %%i% 2 Must have an event on 4 J o I |
every second beat, and
rests can occur only on
beats.

6 ;11%1—12 6 Must have an event on ; Dj? ] m3 |
every beat, no rests, and
each beat is divided into
equal durations.

7 it 6 Must have an event on - TN
every beat, and no rests. % |

8 1:t 12 Must have an event on I 3

%% elvery beat, no rgsts, apd % |
7 must occur In pairs
replacing an %.

9 %%}L% 6 Must have an event on 0 m3a
every second beat, and % * 5 5 |
rests can occur only on
beats.

10 %%gi 4 Must have an event on 4 J. N . |

13_6%%6 every second beat, rests

can occur only on beats,
and a note longer than
one beat must either
begin or end a beat.

Table 2.1: Levels of rhythmic difficulty: general musical information.
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Level | Norm.  Constraints to exclude uninteresting solutions New
sols. sols.
0 |1 0 1
1 16 Cannot have three identical durations on adjacent beats. 10
2 81 Cannot have two identical durations on adjacent beats, and 10
must have at least two % on beats.
3 625 Cannot have two identical durations on adjacent beats, 30

1 1 1
16, at least two 3, at least one 7,

must have at least six

cannot contain any beat with two é, and must contain at
least one beat with a mixture of % and %.

4 256 Cannot have three identical durations on adjacent beats, 29
cannot have adjacent rests, and must contain rests of i and

% durations, and must contain notes of 411 and % durations.

) 576 Cannot have two identical durations on adjacent beats, 44
cannot have adjacent rests, must have at least one note
longer than % or a }1 tied over a beat, at least one rest, at

least two notes, and at most one note longer than i.

6 81 Must have an adjacent % and %, at least one }1, and at least 10
two beats starting with a %.
7 625 Cannot have two identical durations on adjacent beats, 32

at least one % at

must have an adjacent % and % or & 35

6’
least three %, at least one %, and at least one ;11.
8 4096 Cannot have two identical durations on adjacent beats, 64
must have have an adjacent % and % or i+, at least one

6’
L at least one 1. at least two L. at least one and a +

3 8 8 1_167 4

on the second or third beat.

9 10,000  Cannot have two identical durations on adjacent beats, 28
cannot have adjacent rests, must have an adjacent % and %

or %, at least one %, at least one rest with duration % or %,

at least one rest with duration %, at least four notes, and

a ;11 which is not on the last beat.

10 128,164 Cannot have two identical durations on adjacent beats, 84
cannot have adjacent rests, has no event on the beginning

of the second and fourth beats, has at least one rest, at
least three notes, has exactly one =, at most one %, at

16° 4>
most two %, and at most one %.

Table 2.2: Levels of rhythmic difficulty: creating “interesting” exercises. The number of
solutions was determined by generating all possible solutions in Oz.
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For ease of programming, we represented each event with an arbitrary integer.

Figure 2.2 shows our event list.

0: This represents no event occurring at this position.
1: This represents the beginning of a note.
2: This represents the beginning of a rest.

The event list can express any rhythm which fits into our “grid” of beats and
beat divisions. However, there are some constraints which we cannot easily express,
such as “must contain at least one half note”. To constrain the durations directly,
we introduce a second list of variables to store durations. The duration list D has
the same number of variables as the event list £, and is linked to the event list so

that information may pass between the two. The lists are indexed starting from 1.

o D;=1 <= (E; #0)A(Eiy1 #0)

e.g., starting from position i, E contains 1 1.

e D;=2 < (E; #0)A(Eiy1=0) A (B2 #0)

e.g., starting from position i, E contains 2 0 1.

° DZ:N,N>2 < (EZ%O)/\(EZ_H:O)/\
e.g., starting from position i, £ contains 1 0 0 2 (for M = 3).

One problem remains: how do we define durations at the end of our lists? For
example, if our list contains 8 values, and Dg = 1, then Eg and Ey must be # 0. But
FEq does not exist.

To solve this problem, we add a “courtesy 1”7 to the end of our Event list, cre-
ating the Ey that we needed. This neatly constrains the possible durations without

requiring any special cases in our definition of the Duration list.

music% ¥ 'h ,{ 7 'L|—¢h g 'h g L'
tme | [ 1 [ 0 [ 0D I 0P 0P 1 1 1|
events 1 0 21 2 0 2 1 1 2 0 1 2 0 0 1
durs. 2 0 1 1 2 0 1 1 1 2 0 1 3 O 0 1

Figure 2.2: Sample rhythm with implementation details.
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Defining Constraints

Once we have linked our event and duration lists, implementing the constraints is
straightforward — we may express constraints in terms of events and/or durations.

We shall examine two levels in detail to illustrate this point.
Level 2 Constraints

To represent quarter notes, eighth notes, and sixteenth notes, we need to divide each
beat in 4. Our event and duration lists will therefore contain 16 variables.! We begin
by specifying that an event occurs on every beat (2.1), and that we do not allow any
rests (2.2):

VEj|i € {1,5,9,13} : E; £ 0 (2.1)

Now we specify that each beat must be divided into equal durations — in other

words, every non-zero duration must be equal to the first duration of that beat (2.3):

Vil <i<7: (2.3)
((D4*z‘+2 =0) V (Daig2 = D4*i+1)) A

((Dasivs =0) V  (Dasirs = Dasiy1)) A

(Dgsisa =0) V  (Dasiza = Dasit1))

This constraint may appear to allow invalid solutions for duration sequences such
as 1 0 0 1, but such solutions are already forbidden by the linking between the
Event and Duration lists.

Constraints (2.1), (2.2), and (2.3) define level 2. We add more constraints to
ensure that we always get “new” exercises: we require at least 8 sixteenth notes
(2.4). The boolean values true and false are represented by 1 and 0, allowing us to
add them.

(i Di=1)>8 (2.4)

'The Event list will contain 17 elements, but the final element is the “courtesy 17, and thus the
value cannot vary.
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We cannot have three adjacent identical beats (2.5). Since each beat is subdivided

into equal durations, we constrain the only first duration of each beat.

vD,|i € {1,5,9,13} : (2.5)
(Di = Diya) = (Digs # D;)

Level 5 Constraints

To create the durations we desire we need to divide each beat into 2, so our lists have
8 variables each.? We begin by specifying that we want an event every two beats
(2.6):

Then we specify that rests can occur only on beats — in other words, if E; is not
a beat, it cannot be a rest (2.7):
VE;|i € {2,4,6,8} : E; # 2 (2.7)

Constraints (2.6) and (2.7) define level 5. To exclude uninteresting exercises, we
add four more constraints: each solution should contain at least one note longer than
a quarter note or a tie over a beat (2.8), cannot have identical durations on adjacent
beats (2.9), cannot have adjacent rests (2.10), and contains at least two rests and has

at most one note longer than 1 (2.11).

(Ds #0) vV (D7) #0 (2.8)

\V/Dzl S {1,375} . Dl 7£ DH_Q (29)

(iEi: ) > 2, (iEi: ) <1 (2.11)

2Again, the Event list actually has 9 elements, but the final element is the fixed “courtesy 17
and is thus not a variable.
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2.2.3 Discussion of Rhythmic Exercises

Our music representation offers a good balance between simplicity and capability.
Constraints on the events and durations can be understood — and more importantly,
created — by music teachers with even fairly little programming ability. If a music
teacher in a different tradition (e.g., Cuban drumming or Irish folk tunes) wished to
create rhythmic exercises tailored for her particular needs, she should be able to do
so with relatively little confusion.

As previously mentioned, a CSP must specify the number of variables before
searching for a solution. For our goal of creating short rhythmic exercises, it was
sufficient to create a list of Events and Durations. This approach fixes the total
duration (in our case, to one bar), but allows the number of notes to fluctuate.
Another approach would be to fix the number of notes, and let the total duration
vary — exercises with many sixteenth notes may only be one bar long, while an exercise
with half notes may be six bars long. A more sophisticated solution would be to fix
the total number of notes, but allow notes with a duration of 0. Such notes would be
considered “non-existing”, and would not be exported into musical notation. This
method would allow both the total duration, and total number of “existing notes”,
to vary between different solutions. This is covered in greater detail in [1].

The simple rhythms produced in our exercises do not use any tied notes. However,
our music representation may be easily extended to create rhythms which include ties:
let 3 in the event list represent “begin a note which is tied to the previous note”.
We also need the constraint that 3 cannot follow 2 (you cannot tie a rest to a note).
With those small modifications, we can begin writing constraints to allow ties in any
position we desire.

Adding levels which contain different time signatures is another natural step. This
poses no problem for our music representation; we simply set the length of the Event
and Duration lists according to the total number of beats and the tatum. However,
our music representation cannot accommodate arbitrarily changing time signatures.
If we know in advance that a certain level will contain one bar each of %, %,
time, then there is no problem (since the total number of beats is still fixed), but

4
and 1

we cannot create levels which include an unknown number of bars of unknown time
signatures without using the O-duration trick mentioned above.

Some of our “interesting” constraints may seem a bit arbitrary — for example,
levels 8 and 9 constrain on which beat a quarter note can appear. There is no musical
reason for constraints this tight; rather, this was motivated by the intended use of

these exercises. These exercises are to be downloaded along with a CAMIT program.
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In order to reduce the download size of the data files, the number of exercises was
tightly constrained. This is discussed in more detail in Section 4.2.2.

The order of exercise difficulty levels is based on our intuitions about rhythmic
difficulty. We are not aware of any definitive work in music education which lays out
the best order to introduce rhythms (e.g. Should sixteenth notes be covered before
rests? Are dotted quarter notes easier or harder than triplets?). There was little
uniformity amongst different instrument method books we examined, so we drew
upon our own intuitions. This is one area of future research: we should produce a
few different orderings of these rhythmic difficulty levels, and track the progress of
new musicians through the levels. Do most students get stuck on the same level(s)?

Is there a difference in student progress after six weeks?

2.3 Creating Violin Intonation Exercises

The difficulty of performing simple rhythms is relatively constant across instruments.
Fast notes are more challenging on certain instruments (for example, a beginner can
play sixteenth notes on a violin much easier than on a double bass), but in general,
rhythmic difficulty increases equally over all instruments.

The difficulty of performing pitched music varies tremendously. For example,
playing a D major scale is simple on both violin and voice — but if we change the
scale to Cff major, it becomes considerably harder on the cello, while remaining at
the same difficulty for voice. In fact, some singers may not even realize that the scale
started on a Cf instead of a D! Conversely, some exercises are very easy on a violin,

while being difficult or impossible for singers. Figure 2.3 shows one such example.

() 4

| | | . | |
S 20 S S B B Py T —
0y, ’ ’ ’ fd ¢ o &

Figure 2.3: Violin vs. singer exercise difficulty: the first two bars are equally easy for
singers, but a beginning violinist will find the second bar considerably harder than the first
bar. The third and fourth bars are impossible for singers, while the third bar is trivial for
beginning violinists and the fourth bar is quite challenging.

2.3.1 Violin Intonation Difficulty Levels

Our formulation of the difficulty of intonation exercises will therefore be very specific

to a particular instrument — in this case, the violin. There is enough similarity with
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Level | Variable domains® Other constraints Example
0 S: 1 2, H: 1, 0 - 0; ; 0{ ; .
1 f o } |
F: 0, K: A+ o I ! !
1 S: 1 2, H: 1, Cannot change strings Mi
F: 012, K: A+ to a fingered note. s j
2 S: 1 2, H: 1, Cannot change strings 2 s 3
F:01234, K: A+ to a fingered note. g i
3 S: 1 2, H: 1, No fingered fifths.’ ’ H }3 L
F:01234, K: A+ g . ! |
4 S: 1 2, H: 1, No fingered fifths. o 3 3 2
F: 01234, K: A- gc- T |
5 S: 1 2, H: 1, 0 W
F:01234,K: A+ ==t s ——
6 S: 3 4, H: 1, 0 bg 0 — ‘ |
F:01234, K: G+ o 2 e
7 S: 3 4, H: 1, 0 (N — L2 3 |
F:01234,K: G- e
8 |S: 12 H: 13, 0 R T
F:01234,K: D+ GRES |
9 |S: 1 2 H: 1 3, Cannotchange fingers T
F:01234,K: A+ or  strings  while g : % : ! |
changing positions.
10 |S: 12 H: 13, 0 ¥ A T
F:01234, K: A+ Zg f i |

Table 2.3: Levels of violin intonation difficulty: general musical information.

S’ for string, ‘H’ for hand positions, ‘F’ for fingers, and ‘K’ for the key (+ major or - minor).
Setting a key contrains the possible values of the pitches.
b«Fingered fifths” is a violin term for playing adjacent notes on adjacent strings with the same

finger.

the viola to allow these exercises to be transposed to that instrument.

A violin’s pitch is determined by three factors: the string that is being played, the

position that the left hand is in, and the highest finger that is touching the string. In

a strictly acoustic sense, these last two items are merged into one factor: the length

of the vibrating string. However, violinists are taught to think in terms of placing

fingers within a certain hand position. When creating exercises, we must certainly

consider which fingers are being used, and whether the student must move her left

hand (“shifting positions”) in order to reach a certain note.

Table 2.3 shows our levels of intonation exercises for violin. They correspond

approximately to the pitches covered in the first year of many violin methods. Each
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Level | Normal Constraints to exclude uninteresting solutions New
sols. sols.

0 2 First note is open A. 1

1 86 First note is open A, at least one finger 1, and at least one 10
finger 2.

2 686 First note is open A, at least one finger 3, and at least one 20
finger 4.

3 4204 First note is open A, two notes each on E and A strings, 108
and at most one finger 0.

4 4204 First note is open A, two notes each on E and A strings, at 94
most one finger 0, at most two fingers each of 1-4, at least
one note found in a minor scale not found in a major scale.

5) 6056 First note is open A, at most one finger 0, at most two 96
fingers each of 1-4, and at least one fingered fifth.

6 6056 First note is open G, at most one finger 0, at most two 156
fingers each of 1-4, and two notes each on D and G strings.

7 6056 First note is open G, at most one finger 0, at most two 134
fingers each of 1-4, two notes each on D and G strings, and
at least one note found in a minor scale not also found in
a major scale.

8 3710 First note is the D on the A string, no open strings, at most 102
two fingers each of 1-4, and at least two string changes.

9 39,948  First note is open A, at most one finger 0, at least two notes 93
each in first and third positions, and cannot shift down to
37 or 4" finger.

10 | 64,982  First note is open A, at most one finger 0, at two notes 137
each in first and third positions, cannot shift down to 37
or 4" finger, and cannot change positions without changing
fingers or strings.

Table 2.4: Levels of violin intonation difficulty: creating “interesting” exercises.

exercise contains four quarter notes — we want beginners to be focused on their finger

placement, not distracted by any rhythmic problems. In addition to constraining

the violinist’s strings, positions, and fingers, each exercise level is in a specific key,

constraining the pitches.

As with the rhythmic difficulty levels, we shall repeat each exercise to create two-

bar exercises; this gives students two chances to attempt the exercise. In addition,

extra constraints are added to create “interesting” exercises. These constraints are

presented in Table 2.4. In order to improve the violinist’s intonation, the first note

is always the tonic of the key.
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2.3.2 Implementation notes

Since the difficulty of intonation exercises depends on how a violinist would actually

play her instrument, their creation is more challenging than rhythmic exercises.
Music representation: Notes, Strings, Hand positions, and Fingers

Our intonation exercises contain four notes, with each note being defined by its Pitch,
String, Hand position, and Finger. We therefore create four lists, with four elements

in each list.

Pitch (P;) is represented with MIDI pitch values, which may theoretically be any
integer from 0 to 127. A beginning violinist will not exceed the range 55 (open
G string) to 88 (one octave above the open E string), but we do not need to

constrain these values manually — this is handled by the linking of our lists.
String (5;) can be four values: 1 (the E string) to 4 (the G string).

Hand position (H;) refers to the left hand position. Unfortunately, the violin ter-
minology for positions does not map easily onto integers. The normal hand
position is called “first position”, but a lower “half position” exists. In addi-
tion, many position names allows the first finger to be placed in two different
places. For example, “third position” places the first finger on either a D or
Dt on the A string, while “fifth position” places the first finger on either a F
or Ff.

We therefore use this variable to store the position of the first finger, counting
in semitones above the open string. “Half position” is then position 1, “First

position” is position 2, and “third position” is either position 5 or 6.

Finger (F}) is the finger number. Violinists® start counting with the index finger as
1. Just as positions do not uniquely identify a note in violin terminology, the
exact pitch that each finger plays may vary. For example, in first position on
the A string, the 2" finger may play both C' and C4. Our music representation

handles this ambiguity in the way we link our lists together.

The String, Hand position, and Finger lists do not influence each other — a violinist
may use any finger, in any position, on any string. Violinists rarely play in high

positions on the G string, but it is not unheard of. Individual exercise levels may

3Pianists count with the thumb being “finger 17, which causes considerable confusion for students
studying piano and violin at the same time.
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constrain these values, but they should not be constrained by the general music
representation.

Values in the Pitch list are influenced by the other lists, as shown in (2.12). This
makes use of (;, which is the exact number of semitones a finger is placed above the
Hand position. The definition of G; is shown in (2.13), and requires Oz’s ability to

work with partially-determined variables.

32{83—(7*&-) it £, =0 (212
83— (TxS5)+ (H;,—2)+G; if F;>0
(0 if F; =0
(1v2) ifF=1
Gi={ (3Vv5) if F;=2 (2.13)
(5V6) if F;=3
| 7 if =4

This implicitly sets the range of possible pitches. Since S; can be at most 4, this
sets the lower limit of pitches to be 55. If we limit the range of P; (which we do in
every exercise level), the upper limit is set accordingly.

We could change this music representation to cover the viola instead of violin
by simply changing the constant from 83 to 76. Representing the cello requires a
constant of 64, as well as modifying the definition of G; — fingers on a cello cannot

cover the same range as fingers on a violin.
2.3.3 Definition Constraints

One constraint is applied to all levels: in order to simplify our audio analysis, we

require that adjacent notes have different pitches (2.14).

Vie{1,2,3}: P, # Py (2.14)
We shall examine two levels for examples of the other constraints.
Level 4

This level specifies the domains of our variables (2.15). In addition, we specify a
particular key (2.16) by disallowing scale degrees which do not appear in minor. To
specify the type of minor, we let 7' = 69 (MIDI pitch for ‘A’).
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Vie{1,2,3,4}: S €{1,2} (2.15)
Vi€ {1,2,3,4}: H; =2
Vie{1,2,3,4}: F €{0,1,2,3,4}

Vie{1,2,3,4}: (P, —T) mod 12) ¢ {1,4,6,9,11} (2.16)

We also disallow fingered fifths (2.17).

Vi€ {1,2,3}: (S # Sin1) = ((Fz =0)V (Fip1=0) VvV (F # Fz’+1)) (2.17)

These constraints determine difficulty level 4, but we add extra constraints to cre-
ate “interesting” exercises. Specifying the number of notes on each string (2.18) and
the maximum number of times that each finger can be used (2.19) is straightforward.
We also require that each exercise contain at least one note found in a minor scale

which is not found in a major scale (2.20).

D si=1)=2 () Si=2)=2 (2.18)
(> F=0)<1, (2.19)

(iFizl)SZ (iﬂzz)gz
(iFi:?’)S?, (iFZ-:ZL)gQ

(CL((P—T) mod 12) = 3)v

i=1

(SL (P =T) mod 12) =8)v | >0 (2.20)

i=1

(XL, ((P,—T) mod 12) = 10)
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Level 9

In addition to the variable domains (2.21) and key (2.22) (T = 69), this level is
defined by same-finger shifting (2.23).

Vie{1,2,3,4}:  S;e{1,2} (2.21)
Vie {1,2,3,4}: H; € {2,5}
Vie {1,2,3,4}: F,€{0,1,2,3,4}

Vie{l,2,3,4}: (P, —T) mod 12) ¢ {1,3,6,8,1} (2.22)

Vie{1,2,3}: (P, # P1) = (2.23)
(F=0)V (Fi1 = 0)) V ((F = Fip1) A (Si = Sip1)))
To create “interesting” exercises, we add the simple constraints that there be two

notes each in first and third positions (2.24), at most one finger 0 (2.25). We also
specify that we cannot shift down to 3" or 4™ finger (2.26).

(24:13:2)22, (24:1%:5):2 (2.24)

(i:Fi =0) <1 (2.25)

Vie{2,3,4}: (P,<P_) = (F#3) (2.26)
Vie{2,3,4}: (Pi<P_y) = (F; #4)

2.3.4 Discussion of Intonation Exercises

Our exercises are extremely limited. The first note is almost entirely fixed* in order
to give violinists a “reference pitch”. In addition, this first pitch is taken as the tonic
of the scale if users choose to use just intonation instead of equal temperament. This

is discussed more in Section 3.4.1 and Section 4.3.2. We are therefore choosing only

4The pitch, string, and finger is always fixed, but it may be played in any position.
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three notes. We have further limited the number of possible exercises by restricting
each exercise to only two strings. Despite these enormous restrictions, we have still
reached sixty-five thousand exercises for level ten.

To emphasize the number of potential exercises, consider a level in which we create
8 notes, with each note being on any string, first position, allowing all four fingers
but no open strings, in G major. This gives 16 - 157 ~ 3 billion different exercises;
clearly beyond the practical limits of computer-generated music. We can reduce this
number tremendously by adding “interesting” constraints, but at a some point these
constraints become ridiculously specific.

Future work in this area should not generate all possible exercises. Instead, it
should randomly generate a set of exercises for the near future (where the set would
probably range from 10 to 100 exercises, depending on its intended use). Once this
random exercise generation is implemented, we could eliminate the specific exercise
levels. Instead, we could maintain a set of constraints, which would be modified as
the computer or instructor sees fit. For example, instead of level 2 introducing all four
fingers and level 6 introducing the D and G strings, we could begin from F' € {0},
S € {1,2} and gradually increase the domains. The program would track the user’s
intonation on each finger and each string, and increase the domain of each list when
the student’s estimated skill was sufficient.

This would involve sophisticated audio analysis and possibly machine learning —
instead of calculating a single number to represent the intonation error for each note,
the computer would need to estimate the amount of intonation error due to string,
position, and finger. For example, consider a student whose 1% and 2" fingers were
in tune on the E, A, and D strings, but whose 37 finger was flat on all strings. In
this case, the software would begin giving the student exercises on the G string (since
the strings were not a problem), but would not introduce the 4" finger.

In addition to removing or modifying constraints to control what technical skills
were being tested, such a system could create exercises truly targeted to the current
user. In the above example, the software could add a constraint that at least two
notes should involve the 3" finger. This constraint would remain until the user’s 3"
finger improved, at which point the software may return to having an equal chance
of any finger, or may introduce the 4" finger.

The order of these intonation difficulty levels is based on our own intuitions. Just
as we found that the order of rhythmic material varied amongst different method
books, we discovered that the order of new pitches varied. Some books introduced

shifting before covering minor scales and accidentals; other books began with the
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student playing on the D and A strings instead of the A and E strings, etc. In the
absence of a definitive answer from music education texts, we used our own judgement
to put intonation exercises into an order. Future work could include experiments with
beginning violin students, testing a few different orders of material to determine which

order produced the best results.

2.4 Conclusion

Before asking students to perform exercises, we must have exercises to give them.
Writing exercises by hand is certainly possible, but this introduces practical limits to
the number of exercises. In this chapter, we introduced methods of creating exercises
automatically with Constraint Satisfaction Programming.

More importantly, the definition of these exercise levels is simple enough that
interested music teachers may create new levels on their own. Given the wide range
of technical exercises — different ability levels, different instruments, different musical
styles — allowing users with relatively little programmering ability to define their own

levels is crucial for widespread use.
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Chapter 3

Exercise Analysis

All CAMIT projects must analyze the performances of students. If the student played
the exercise on a MIDI instrument (such as many piano CAMIT projects), no audio
analysis is necessary. In our case, we must analyze the audio to extract temporal or
pitch information before grading the performance.

Our audio analysis (“music transcription”) is relatively straightforward. For the
rhythmic exercises, we must detect a series of claps. For the violin intonation exer-
cises, we must detect the violin’s pitch and the moments at which it changes notes.
As per our design goals described in Section 1.3.3, we deliberately used the simplest
transcription algorithms which yielded accurate results.

Once we have extracted the musical information from our raw audio, we must
grade each performance. The primary purpose of grading is to determine if the
student is ready to attempt harder exercises, while the secondary purpose is to help
the student identify and fix problems. The latter goal is discussed in Section 4.2.1
and Section 4.3.1.

3.1 Music Transcription: Rhythmic Exercises

The automatic detection of onsets in music has been investigated in great detail,
ranging from transcribing percussive music [35] to polyphonic music with varying in-
struments [3, 21]. Our task, however, is much simpler: detecting claps in monophonic
audio, where each clap is at least 100 ms after the previous clap.

To detect claps, we split the audio stream into frames of 512 samples and take
the RMS amplitude of each frame. We then normalize the frames so that the largest
value is 1.0, and look for peaks in the result with values greater than a threshold
K; (generally K; = 0.1 or 0.2), and which occur at least 9 frames after a previously-

detected peak.
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3.1.1 Onset Detection

Digital audio on computers is generally represented by 16-bit samples at 44,100 Hz.
This produces a huge amount of numbers to analyze — a typical clapping exercise such

as Figure 3.1 will usually be at least 10 seconds long, generating 441,000 numbers

between 0 and 65,535.

Figure 3.1: Sample clapping exercise.

We begin by reducing this number: we group these samples into frames of 512
samples. Each frame is approximately 11.6 milliseconds long. We calculate the value

of each frame by taking the Root-Mean-Square of the samples (3.1).

2 2 2
Frms = \/81 TS S (31)
n

where F.,.s is the value of the frame, and s; through s,, are the values of the individual
samples assigned to that frame. In this case, n = 512.

Typical results are shown in Figure 3.2a. The claps are clearly visible to human
eyes. To detect them automatically, we look for peaks whose values are greater than
a threshold K;. Occasionally some artifacts of recording or an echo will produce an
additional peak. In Figure 3.2a, there is such a peak 4 frames after the final large
peak. To avoid such problems, we discard any peak which is within 9 frames (104

milliseconds) of a previous peak.
3.1.2 Discussion of Rhythm Transcription

Our onset detection is extremely simple, but quite effective for claps. In a quiet room,
there is no difficulty in detecting normal claps. It is possible to fool the detector by
clapping once or twice as loudly as possible and then clapping as quietly as possible,
but this requires special effort.

This onset detection will not function in a room with significant background
noise, such as an elementary school classroom or a party. A human clapping once or
twice will have no difficulty being detected, but when clapping sixteenth notes, the
amplitude of the claps varies enormously, and cannot be reliably detected.

We considered adding a tapping mode: instead of clapping, a user would tap on
a mouse button or the space bar. The tapping would be entirely unaffected by the

background noise, making it suitable for a party game. However, this could introduce
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Figure 3.2: Transcription of a typical clapping exercise.

other problems: although many users may find timing key presses or mouse clicks
quite easy,! some users may have problems with this. Clapping is very simple —

nobody has any doubt about when a clap occurred, and most humans can clap.

3.2 Grading Rhythms

When creating an algorithm for automatically grading rhythmic exercises, we consider

the following goals:

1. The closer a student gets to the correct answer, the higher the grade should be.

However, we should not expect students to clap in precisely the correct frame.?

2. Grades should not vary based on the number of notes in the exercise.

3. A student should fail the exercise if she claps the wrong rhythm (i.e. adds an

extra clap, misses a clap, or claps in significantly different places).

!Especially users under the age of 30, who began playing computer games before they were ten
years old.

2Each frame is less than 12 milliseconds long. Such accuracy would be pushing the bounds of
human ability (although not impossible), and is certainly not required for music.
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These goals are satisfied with the the well-known Mean-Squared-Error (MSE)
function (3.2).

n

: Z (D; — E;)? (3.2)

=1

S|

Error =

where D; and FE; are the detected and expected onsets, and n is the number of onsets.

Both lists are indexed starting from 1.
3.2.1 Aligning Onsets

Students do not begin clapping at precisely the moment that we begin recording, so

the detected onsets do not begin at 0. Typical values are shown in Figure 3.3.

Detected: 179 265 311 354 398 441 530 600 637 693 739 782
Expected: 0 86 129 172 215 258 344 430 473 516 559 602

Figure 3.3: Comparison of typical detected onsets and expected onsets.

To align the detected onsets with the expected onsets, we must find an offset x
such that Y (D; +x — E(i))? is minimized. Minimizing the MSE is a well-known

problem; it occurs when the derivative is 0. The solution is derived in (3.3).

0= &YX Ditr—E)
=  YLinDitr-E)?
= 2Xia2-(Ditz—E)-(1)
= YD+ e -3 B
n-r= > i B =32 D
r = E—-D (3.3)

As long as students clap the correct number of times, we can easily find the
optimal offset by comparing the mean values of these lists.

If students do not clap the correct number of times, comparing the mean values
will not necessarily yield an optimal alignment. We test two possible alignments:
using the offset calculated with (3.3), and setting the offset to the first onset. We

take the alignment which produces the lowest error score.
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3.2.2 Calculating Rhythm Errors

With (3.3), we can now align our detected onsets. In Figure 3.4, E = 315, D = 494,
so the ideal offset is —179. We shall use A; to refer to the aligned detected onsets.

Aligned 0 86 132 175 219 262 351 421 458 514 560 603
Expected 0 86 129 172 215 258 344 430 473 516 559 602
Differences 00 3 3 4 4 7 9 15 2 1 1

Figure 3.4: Aligned onsets, expected onsets, and their (absolute) difference.

If we knew that student performances would always be approximately correct, we
could apply Equation 3.2 directly. However, suppose that a student misses one note
in the middle of the exercise. In this case, for the first half of the exercise, each A;
matches with a F;, but in the second half, each A; matches with E;,;. In this case,
we wish to give the student a poor mark for missing one note, but we should still
recognize that the second half was correct. A similar argument can be made if the
student adds an extra clap, where A; matches with E;_;.

To accommodate such errors, instead of matching E; with A;, we match F; with
the closest value in A. In an exercise with a missed clap, this gives a large penalty
for one note, instead of a large penalty for many notes. To penalize extra claps,
we match A; with the closest value in £. The complete algorithm is presented in
Algorithm 1. After experimentation, the constants were fixed as K, = 0.45 and
K,, = 100. Applying this algorithm to the exercise in Figure 3.4 produces a final
grade of 68.0%.

In some cases, a student may have missed a note yet would still receive a passing
grade. For example, missing one sixteenth note in the middle of a series of sixteenths
in an exercise with 16 notes in total at 60 BPM would only add 13 to the error sum; if
the other notes were perfect, the student would still receive a grade of 87%. To avoid
this false passing grade, if length(A) # length(F) we reduce the actual calculated
grade to a failing grade.

3.2.3 Discussion of Rhythmic Grading

MSE was chosen because it is a standard way to measure errors, and initial tests
showed a good relationship between the our intuitive sense® of rhythmic accuracy

and the grades assigned by Algorithm 1.

3We have been performing music for twenty years and have taught music for five years, so our
“intuitive sense” is not completely irrelevant. However, it is still just intuition.
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Algorithm 1 Calculating Rhythmic Errors
Require: A // list of aligned onsets
Require: E // list of expected onsets
Require: K,, // constant: maximum amount of error for each note
Require: K, // constant: scaling factor for total errors
Require: f(L,z) // finds the closest value to x in list L
s« 0 // sum of errors
for all ¢ in length(E) do
e — |f(A E;) — Ei
e « e*/length(FE)
e « min(e, K,,)
s« s+e
end for
for all i in length(A) do
e — |f(E, A;) — A
e « €?/length(A)
e « min(e, K,,)
s« s+e
end for
return 100 — K, - s

It must be noted that (3.3) only produces an optimal alignment if we rely on three
assumptions: that the performance contains the correct number of notes, that each
A; matches with each E;, and that the amount of error per note is not cut off by our
maximum value K,,. However, Algorithm 1 was designed to accommodate situations
where these assumptions do not hold.

For performances with an incorrect number of notes, our alignment will not nec-
essarily produce the best score. More sophisticated algorithms could certainly be
used for aligning exercises with the incorrect number of notes: we could try setting
the offset to D; — E; for every pair of (7, ), and pick the alignment which produced
the best score. Alternately, we could simply try every possible alignment. Most per-
formances will contain approximately one thousand frames, and testing an alignment
does not require a great deal of computational power.

However, this conflicts with our overall goal of simplicity as discussed in Sec-
tion 1.3.3. Students who misread the rhythm to such an extent that they do not clap
the correct number of times will not receive a passing grade in any event; it does not
matter a great deal whether they receive 25% or 45%. Performing an exercise again
takes only 10 seconds; students who misread the rhythm should simply try again.

A similar argument applies to performances in which the nearest value to A; is not
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F;, and to performances which contain at least one note which triggers the maximum
error per note (K,,). (3.3) may return a sub-optimal solution, so a student’s grade
may be lower than it should be. However, once K, comes into play, the student will
have failed the exercise already.

The constants K, and K,, were fixed by experimenting with a few test cases and
the our intuitions. Future work would include an experiment where music teachers
arranged performances of rhythm exercises from best to worst, and then fix the values
of K, and K, to match their results.

Some rhythm-grading projects use a pass/fail mechanism for each note: if a mu-
sician is within x frames, the note is correct; otherwise, the note is incorrect. We
decided not to use this method. First, some musicians can reliably clap within 2
frames of the correct time; such accuracy should result in higher scores than a mu-
sician who is merely within 5 frames. Second, our grading algorithm distinguishes
between “has the right idea” (say, within 10 frames) and “has absolutely no clue”.
If we used a pass/fail (setting the boundary at 7 frames), then both types of per-

formances would receive a grade of 0%, instead of distinguishing between 30% and

0%.

3.3 Music Transcription: Intonation Detection

The automatic transcription of violin music — even solo violin — is an ongoing area
of research. Pitch detection for monophonic violin sounds is reliably performed by
modern algorithms such as YIN [10], but polyphonic violin chords require special
attention [25]. However, the main problem is detecting the onsets of violin notes: al-
though a violin may occasionally play notes with a sharp attack (e.g., pizzicato), most
notes have a gradual attack, making automatic transcription difficult. A novel ap-
proach to this problem is fusing data from audio and video [42]; surveys of traditional
transcription methods are given in [21, 6].

We can avoid both these problems by designing targeted exercises. Our exercises
do not include chords, so we do not need to worry about polyphonic pitch detection.
We have also specified that our intonation exercises will not contain any repeated
notes — in other words, the onset of a new note will always involve a change of pitch.
Finally, since our exercises are targeted at beginning violin students, we need not
worry about vibrato — violinists only learn vibrato after two or three years of study.
Our automatic transcription of violin music need only look at the changes in pitch.
This was first attempted by Collins [7], although he was attempting to solve a much

harder problem: to segment real music rather than targeted beginner exercises.
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3.3.1 Fj Detection

Strictly speaking, most “pitch detection” algorithms do not actually attempt to detect
the pitch. “Pitch” is a psychoacoustic term for a certain human sensation, and cannot
be automatically calculated. Some algorithms may perform “pitch estimation,” where
the algorithm attempts to estimate the pitch that a human would report. However,
most algorithms which perform “pitch detection” are in fact “fundamental frequency
(fo) detection” algorithms. The fundamental frequency of a signal is the inverse of
the shortest period at which it repeats. Unlike pitch, the fundamental frequency can
be determined via physical measurement. In most cases, the fundamental frequency
is identical (or at least close) to the pitch.

Real-world audio signals never repeat exactly; even if we examine a small portion
of the audio (generally 512 or 1024 samples), an apparently “stable” note will not
contain any exact repetitions. For this reason, when detecting the fundamental, we
can only pick the best candidate, rather than being certain that our algorithm always
produces the correct answer.

After experimenting with a few f; algorithms, we decided to use a modified YIN
algorithm [10]. YIN operates in the time domain, relying on the assumption that
Ty — Tyy, 1s minimal when 7 is the period of the signal. Finding the period is then a
matter of picking the smallest d;(7) in (3.4), where W is the window size and x; are

the samples.

w

di(r) = (1) — 2j4r)? (3.4)

j=1

YIN contains a number of measures to increase the speed of this calculation and
avoid errors, but a detailed examination of the algorithm lies outside the scope of
this thesis.

Brossier modified the YIN algorithm to compute the square difference function
d;(7) in the spectral domain [6] as well as a few extra measures to reduce errors, but
a detailed examination of this also lies outside the scope of this thesis.

Using Brossier’s spectral YIN algorithm as implemented in the aubio C library
(http://www.aubio.org), with a window size of 1024 and hop size of 512, ana-
lyzing an amateur violinist performing Figure 3.5 produces Figure 3.6. Before using
the modified YIN algorithm, we applied a silence gate: any frame which was too
quiet received a value of 0. Since humans perceive pitches on a logarithmic scale and

our ultimate goal is to grade intonation exercises, we convert all pitches into MIDI
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Figure 3.5: Sample violin intonation exercise.
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Figure 3.6: Pitches from a violin intonation exercise performance. The violinist did not
prepare his hand position before beginning the exercise: the first note is an open string,
while the second note was used to find the correct hand position. The subsequent notes
were much more accurate.

3.3.2 Note Segmentation

Having determined the pitch of each frame, we group frames together to form notes.
We can easily identify notes by glancing at Figure 3.6, but we need an automatic
process to perform this segmentation.

Algorithm 2 performs this task adequately; Figure 3.7 shows the output of the
algorithm. It scans through the pitches, finding the median value from a window of
Ky pitch frames. If the current median is significantly different from the previous
note, it marks the current frame as a note boundary. K; was set to 34 ~ 0.4 - %

(i.e. the minimum note length is 0.4 seconds), and K, was set to 0.5.
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Algorithm 2 Segment pitches into notes
Require: P // list of pitches
Require: K; // constant: minimum number of frames in a note
Require: K, // constant: minimum pitch change for a note boundary
B ]| // list of note boundaries
j <0 //index for B
om < 0 // old (previous) median value of note boundary
0; < 0 // old (previous) frame of note boundary
for all i in length(P) do
m « median(F;, Piy1, ..., Piik,)
if (|m — o,,,| > K,) then
if (1 > 0; + Ky) then // new boundary found
Bj — 1
Je=J+1
Om — M
0; < 1
else // update previous boundary
Bj — 1
Om — M
0; < 1
end if
end if
end for
return B

3.3.3 Discussion of Intonation Transcription

Readers familiar with the current state of automatic music transcription may be
surprised by the simplicity of our note segmentation. Algorithm 2 relies on three
assumptions: that note boundaries have sharp changes in the pitch, that notes have
a stable fj as detected by the modified YIN algorithm, and that all notes are longer
than 0.4 seconds.

It may seem obvious that violin notes will contain sharp changes in pitch — putting
down a new finger will abruptly change the pitch — but this assumption only holds for
technical exercises. When violinists play real music, they occasionally add glissand:
for expressive purposes. In contrast, when playing technical exercises, violinists try
to keep each note as clear as possible.

Not all instruments have a stable fy. Piano notes in particular are not stable — as
the note decays, the difficulty of finding fy increases, resulting in unreliable values.
Bowed violins produce very stable fy values.

The assumption that all notes are longer than 0.4 seconds will not apply to music
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Figure 3.7: Segmented notes of a violin intonation exercise performance.

in general. For reference, this translates to eighth notes at 75 BPM. Most of our
rhythmic clapping exercises contain notes faster than this, as does virtually any piece

of real violin music.

3.4 Grading Intonation

When creating an algorithm for automatically grading intonation exercises, we con-

sider the following goals:

1. The closer a student gets to the correct answer, the higher the grade should be.

However, we should not expect students to play precisely the correct pitch.*
2. Grades should not vary based on the length of the notes in the exercise.
3. A student should fail the exercise if she plays a wrong note.

4. We should track the direction of the intonation error in addition to the magni-

tude.?

4Unlike clapping with a rhythmic accuracy of 12 milliseconds, playing a violin with perfect pitch
is humanly impossible.

5Technically this is a requirement for visualization and not generating a grade, but it is convenient
to discuss these calculations as part of the grading.
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The intonation grading will also be based on MSE (3.5).

n

Error = % : Z (P — Q(i))? (3.5)

i=1
where P; are the detected pitches, and Q(7) is the expected pitch for frame i. P is
indexed starting from 1. When grading intonation exercises, we do not consider the

rhythm, so (i) is assigned based on the detected note boundaries and the exercise.
3.4.1 Calculating Intonation Errors

Although the modified YIN algorithm is very good at analyzing violin sounds, it
still makes occasional mistakes. In Figure 3.6 and Figure 3.7 we see a few frames
reporting a pitch of 62 instead of 74 (an octave error).® When grading performance,
we should not penalize the student for errors in fy detection. To do this, we ignore
any pitches that are more than K, units from the median pitch of the note. We set
K, = 2 (two semitones). We also applied a maximum amount of error for each note;
K, =1 (one semitone).

In addition to the magnitude of error, we also wish to track the direction; our
visualization of the performance will show the user whether a note was too high, too
low, or varying in both directions. Algorithm 3 shows how we calculate the magnitude
and direction of error for a single note.

By default the expected pitch ¢ is the MIDI note value. However, the user may
choose to use just intonation” instead of equal temperament. In just intonation mode,
the program takes the first note of the exercise as the tonic of the key. The expected
pitch is calculated based on the scale degree of the expected note.

To get the overall score, we sum all the note errors, multiply by K., and subtract
that from 100. After experimentation, we set K. = 50. Applying this algorithm to

the exercise in Figure 3.7 produces an overall grade of 86.9%.

6Qctave errors are the most common error with f; detection algorithms: the detected frequency
will be half or double the actual frequency. They are especially common at the beginnings and
endings of notes.

"Under “equal temperament,” the octave is divided into twelve equal semitones, where the fre-
quency of each semitone is ¥/2 ~ 1.0595 times the frequency of the previous semitone. Under “just
intonation,” simple ratios are used instead: A fifth is the ratio of 3 : 2, a fourth is 4 : 3, a major
third is 5 : 4, and so on.

The biggest difference between the two temperaments occurs on the minor seventh of a scale. For
example, in the key of A major or minor (taking A = 440 Hz), a G will be 783.99 Hz under equal
temperament, and 770 Hz under just intonation. The difference is quite audible.
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Algorithm 3 Calculating Intonation Errors
Require: P // list of detected pitches for the note
Require: ¢ // the expected pitch of the note
Require: K, // constant: allowable range of pitches from median
Require: K, // constant: maximum error magnitude per note
e« 0 // magnitude of error
d — 0 // direction of error
¢« 0 // count frames
m <« median(Py, Ps, ... P,)
for all 7 in length(P) do
if (|P; —m| < K,) then // the pitch is close enough to the median
x— (P, —q)
e e+ a?
d—d+zx
c—c+1
end if
end for
if (¢ > 0) then // normalize for note length
e—efc
d«—djc
end if
// decide whether note is sharp, flat, or both
if (d < —=0.1-+/m) then
d— —1
else if (d > 0.1-y/m) then
d—1

else
d«—0

end if

if (m > K,) then // clip maximum error magnitude
m «— K,

end if

return e, d

3.4.2 Discussion of Intonation Grading

As with the rhythm grading, we have no hard evidence that MSE is an appropri-
ate measure of intonation errors, nor do we have any hard evidence in favor of the
constants chosen. Future work in this area would involve a study in which music
teachers rate exercises with varying amounts of intonation errors.

One possible extension to our grading algorithm is to weigh the frames within each
note differently. The ultimate goal of these intonation exercises is not to have the

student playing with perfect intonation, but rather to develop the student’s ability to
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correct her own intonation. Improving the student’s intonation is a secondary goal.

The distinction is important: no violinist plays perfectly in tune. Very skilled
violinists will place their fingers close to the correct places, but they must still con-
tinually correct their finger positions. This functions much like our sense of balance:
when sitting or walking, we do not consciously think about our balance, yet our
brain is constantly directing our body to shift positions. We only consciously think
about fixing our balance when performing difficult tasks such as riding a bicycle while
holding a suitcase in one hand.

With this in mind, it would make sense to reward students who fixed their into-
nation in the middle of a note. This is already done to some extent, since the frames
with fixed intonation would add much less to the error total. However, it may be
desirable to apply additional weighting to the frames; something like a logarithmic
function, where the weighing of the first frame is 0 and the weighting of the final
frames approach 1. Again, a future survey of music teachers would be very valuable
for judging whether this produces more accurate grades.

One potential problem with our intonation grading is that it does not allow vio-
linists to play with vibrato. Skilled violinists normally add vibrato to notes; doing so
in the context of these intontation exercises will result in a very poor grade. However,
as long as the violinist is aware that she must not use vibrato, this problem may be
avoided — violinists often practice scales without vibrato, so asking them to suppress

their vibrato is quite reasonable.

3.5 Conclusion

In this chapter, we discussed the analysis of audio from student performances. From
a list of approximately half a million samples of digitized audio, we calculated a list of
approximately a dozen numbers, representing the musical events in the performance.
These detected musical events were compared to the expected musical events, result-
ing in a list of errors. The sum of these errors produced a single score for the entire

performance.
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Chapter 4

Game Design and Visualization

This chapter brings together the exercises from Chapter 2 and the analysis of Chap-
ter 3 in the form of a game. Students are presented with an exercise to perform with
an optional metronome. After a student has attempted the exercise, her performance
is graded and the results are presented visually.

In the “game” mode, a random exercise is chosen from each difficulty level. If the
student receives a grade of 80% or higher, she has “passed” the exercise, and a new
exercise is randomly chosen. When the student has passed two exercises on a level,
she advances to the next level.

Exercises may be also chosen individually. In such cases, when a student has

passed an exercise, she is prompted to choose another exercise.

4.1 Common Features

The audio from each performance is stored so that students may listen to it while
examining the visualization of their performance. Each exercise may contain any
number of “attempts”, as shown in Figure 4.1. Each attempt is graded and stored
individually.

If the performance analysis varies considerably from the expected values, the color
background is changed. Red indicates that something is seriously wrong, while yellow
indicates a warning that there was probably a mistake. These mistakes are generally
either a problem with the transcription (i.e. the program fails to detect the claps or
segment the notes), or the student misreading the exercise (i.e. playing the wrong
notes). In these cases, there is little point in examining the exact score or output, as
the analysis probably does not reflect the true ability of the student.

Both types of exercises have two levels of visualization: the main display, and the
extra display. In both cases, the main display shows the detected errors and suggests

possible improvements. The extra display, reachable by double-clicking on the main
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Figure 4.1: Intonation exercise with three attempts. The second attempt is selected; the
grade in the bottom-right corner refers to this attempt. In the first attempt, the student
played two Bs instead of Es; the shaded background indicates that performance was very
different from the exercise. In the third attempt, the pitches were almost perfect.

display, shows low-level amplitude or pitch information. The extra display may be
useful for students or teachers curious about transcription mechanism, but is not

intended to be directly helpful for correcting student mistakes.
4.1.1 Levels of Supplied Metronome

Students may observe a metronome while recording or listening to an exercise. Dif-
ferent types of metronomes may be selected for recording and listening. There are

four types of metronome:

1. Audible metronome (“rock musicians”): beats are indicated with audio (a
drum), optionally with flashing light(s). The use of headphones is recom-
mended. However, if the musician’s claps are louder than the audio beats, the

drum sounds will not interfere with the transcription of the musician’s claps.

This level is suitable for musicians who play in groups with constant percussion,

such as rock musicians or instruments in many non-Western traditions.
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2. Visual metronome (“classical musicians”): beats are only indicated with flash-
ing light(s). Musicians may choose between a (small) flashing icon in a toolbar,
an independent (potentially large) window containing a flashing circle, or an
independent window containing two circles which blink on and off in alterna-

tion.

This level is suitable for musicians who play in groups with conductors but

without constant percussion, such as orchestral musicians.

3. Introduction only (“conductors”): the first four beats are indicated with a
flashing light(s), and then no other beats are shown. Musicians must perform

the exercise at the indicated tempo without any additional aid.

This level is suitable for musicians who set the tempo for other musicians, such

as conductors or percussionists.

4. None: there is no audible or visual metronome.

This is suitable for listening to a previous attempt.

4.1.2 User-Created Exercises

In addition to the exercises created in Chapter 2, users may create their own exercises.
This may be useful if they have difficulty with a particular passage in a piece of
music. Students — or their teachers — may add a few bars of the music to this
program, allowing the student to practice, receive objective analysis, and view the
visualization of their errors.

Technical details of including user-created exercises (or even entirely new games)

are presented in Section B.3.2.

4.2 Rhythm Games

Students are encouraged to use the metronome while performing rhythm exercises.
Students may alter two aspects of the transcription and grading algorithms: the
onset threshold K, and forcing the alignment to the first beat instead of the optimal
alignment (3.3).

4.2.1 Displaying Rhythm Errors

When the performance has been analyzed, the main display shows the student the
expected and detected claps. Figure 4.2 shows an example of this; it uses the same
performance as was used in Figure 3.2a and Figure 3.4. To understand the display,

users only need to know that time progresses from left to right, that the upper black
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Figure 4.2: Rhythm performance (main display). The top black vertical lines show the
expected claps, while the bottom gray (red in the program display) vertical lines indicate
the detected claps. If the claps line up perfectly, there will be a single (multi-colored) line
from the top to bottom of the display.

bars show where they should clap, and the lower gray bars (displayed in red in the
actual program) show where they did clap.

The background of Figure 4.2 gives a warning based on the absolute difference
between the number of detected claps and the expected claps. If the difference is
0, the background turns white (ok). If the difference is 1, 2, or 3, the background
turns yellow (warning). If the difference is greater, the background turns red (serious
problem).

Figure 4.3 shows the main display of an example with almost perfect rhythm, but
an incorrect tempo. However, this visualization does not immediately indicate that
the tempo was too fast; rather, it prompts a student to wonder why her first note
was so late. In such cases, it may be preferable to align the first detected onset with
the first expected onset, regardless of whether this produces an optimal score or not.

Extra information about the transcription is shown in Figure 4.4. Using this
display, students in a particularly noisy room or with particularly inconsistent volume

of claps may raise or lower K; to optimize the clap detection.
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Ready Score: 0.0%

Figure 4.3: Rhythm performance (main display) with incorrect tempo. (top) Normal
alignment. (bottom) first beat alignment.

4.2.2 Discussion of Rhythm Game

The rhythmic grading of Section 3.2 may be criticized for grading a musician’s tempo
stability, in addition to their ability to perform rhythms. Leaving aside the question
of whether it actually makes sense to perform a “correct rhythm” if the tempo varies
significantly within two bars, it is certainly true that our grading algorithm punishes
students who do not follow the specified tempo. This is particularly apparent with
the 0% grade in Figure 4.3. Could this be avoided?

A human listener — particularly a skilled musician — can easily infer an overall
tempo from a single bar, and grade the rhythm accordingly. Automatic tempo detec-
tion is an ongoing area of research; computers are nowhere near as good as humans
when it comes to “picking up” a tempo. Attempting to detect the tempo gives us
two problems to solve simultaneously: pick the best tempo, and pick the best onset
alignment. Solving these problems together is significantly more difficult than solving
only one — especially since we cannot be certain that the student will perform the
correct thythm at all!

In addition, we should consider whether an externally-imposed tempo is actually a
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Figure 4.4: Rhythm performance (extra display). The RMS (amplitude) values extracted
from the audio are shown in black lines on the bottom; the thick gray (red in the program
display) lines on the top indicate detected onsets. The faint dotted horizontal line (blue in
the program display) indicates K;, the threshold value for peak detection.

problem. We argue that it is not: in almost every musical genre, when musicians play
together, they play at the same tempo. Rock guitarists follow the drums. Orchestras
follow the conductor. Chamber musicians negotiate the tempo amongst themselves
and may exchange roles of setting tempo or following it — but all members must be
able to follow the tempo set by other members.

Playing strictly according to a metronome is un-musical, but our exercises are
not intended to be expressive music. Performing a solo Bach suite with strict tempo
would be horrible, but clapping with a metronome for two bars would simply be good
practice technique.

The rhythm game fulfills the overall goals discussed in Section 1.3.3:

Focus: Students must follow the music and metronome in addition to concentrating
on their instrument. Since their instrument is simply their hands, students
should have no difficulty performing the claps while reading the music and
listening or watching the metronome. Since the metronome is configurable,
students may choose whether they find the audio or visual metronome to be

easier to follow, ensuring that they may concentrate on clapping the rhythm.

Reliability: The changing background color gives warnings about potential prob-

lems in the transcriptions, and these problems are easy to investigate (and
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potentially fix by modifying K;) by studying the extra display.

Transparency: As long as users can grasp the idea of digital sound being displayed
as a set of amplitudes, the ensuing steps of recognizing onsets, finding dif-
ferences between detected and expected onsets, and calculating a final grade
are relatively simple. Grasping the connection between audio and a graphical
display of amplitudes is not trivial, but given the stark contrast between the
amplitudes of claps and background noise, most users should be comfortable

with this step after a few experiments.

Simplicity: Clapping is one of the simplest forms of human music-making, as well

as being one of the easiest events to detect in audio.

4.3 Violin Intonation (Games
Students may alter one aspect of the transcription: K, the minimum note length.
4.3.1 Displaying Intonation Errors

The main violin intonation display is shown in Figure 4.5. This display should be
understandable by students or parents with very little musical knowledge: if a note
is blue, move the finger higher. If a note is purple, move the finger lower. If a note
is green, stop moving the finger around in the middle of a note.

The background of Figure 4.5 gives a warning based on the number of notes
whose pitch was at least one semitone away from the correct pitch. If there were 0
bad notes, the background turns white (ok). If there was 1 bad note, the background
turns yellow (warning). If there were 2 or more bad notes, the background turns red
(serious problem).

Figure 4.6 shows the extra display for violin intonation. This may be used to
experiment with different values for K; — if the value of K is too high or too low,
the note boundaries will not match up with our intuitive sense of where the boundaries
should be.

4.3.2 Discussion of Violin Intonation Game

The scope of the violin intonation game is much more limited than the rhythm game.

The rhythmic exercises cover the first few years of rhythms that a classical violinist

will see. The lack of alternative time signatures such as % or g is unfortunate, but

these could be added without changing the overall approach.
In contrast, the violin intonation game only covers the first year of pitches that

most students would encounter. The transcription is only suitable for relatively long
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Figure 4.5: Intonation performance (main display). The intonation error for each note is
shown. Bars above the central line (purple in the program display) indicate that the note
was generally too sharp, while bars below the central line (blue in the program display)
indicate that the note was generally too flat. Bars both above and below (green in the
program display) bars indicate that the note alternated between too sharp and too flat.
The color shade and the height of the box indicate the magnitude of the error.

notes. This is acceptable for slow “warm up” exercises, but it would be nice if the
transcription could handle faster exercises as well.

Switching between equal temperament and just intonation is primarily a cosmetic
feature. On most exercises, switching between the two temperaments only changes
the final grade by a few percentage points. However, this feature may still be useful in
blunting criticisms or distrust from students. If a violinist receives a bad score on the
equal temperament scale, she may complain “oh, violinists don’t use the out-of-tune
‘piano tuning’” when we play by ourselves. What silly software! I should have gotten
a higher grade!”. With the ability to switch to just intonation, such a violinist’s claim
may be tested.

The transfer of exercise data between creation and analysis is not ideal — the key
is not explicitly stated. Due to this fact, the exercise must start with the tonic, and

the analysis always treats the first note as such for the just intonation grading mode.
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pitches

Figure 4.6: Intonation performance (extra display). The gray dots (red in the program
display) indicate the pitch of each frame. The vertical lines (blue in the program display)
indicate the note boundaries, while the horizontal lines (also blue in the program display)
indicate the expected pitch of each note.

This limits the number of automatically created exercises, which may or may not be
a bad thing, since it reduces the size of downloaded files. However, it may pose a
problem for user-created intonation exercises.

The violin intonation game mostly fulfills the overall goals discussed in Sec-
tion 1.3.3:

Focus: Students must follow the music, follow the metronome, and perform the
exercise on their instrument. Reading music and playing a violin at the same
time should be nothing new to music students with a few weeks’ experience.
For some students, a metronome may be an unusual distraction, but this is

unavoidable.

Reliability: If a problem arises in the transcription, there will probably be at least
one note which has a large absolute error. This triggers a warning in the form
of the background color. Such problems are easily investigated (and possibly

fixed by modifying K,,) by examining the extra display.

Transparency: The intonation game is as transparent as possible. The initial pitch
detection is not transparent — unless users look at [10] and [6] themselves, they

will not know how the program generates the list of pitches. That said, in some
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ways the connection between audio and the graphical pitch display is easier than
the connection between audio and the graphical amplitude display. Humans
— especially music students — naturally think about sound being composed of
pitches; unlearning this notion is a non-trivial task for students studying digital
audio. In any case, most users should be able to recognize the connection

between audio and the graphical pitch display after a few experiments.

Once the users trust the graphical pitch display, the rest is relatively easy to
follow. Segmenting pitches into notes is easily understood, especially if the users
experiment with different values for the minimum note length. Comparing the
actual pitches with the expected pitches can be done by eye, and noting the

relationship between the size of the error bars and the final score is trivial.

Simplicity: The intonation game is relatively simple, but a number of trade-offs

were made.

Users must choose whether to use equal temperament or just intonation. This
introduces a choice which may confuse many users; even some university music
students do not realize that there is more than one tuning system. We certainly
cannot assume that beginning violin students are familiar with the distinction!
We recommend that music teachers assign one system or the other, and instruct

the students not to modify this setting.

By using a large value for the minimum note length, we achieved good results
with a simple note segmentation algorithm. As a result, the grading process is
much easier to understand than it might otherwise be. However, 0.4 seconds is
quite long for violin technical exercises. In real music, violins often play shorter
notes; many technical exercises for violin explicitly test playing quickly. In this
case, our attempt at simplicity has compromised the usefulness of the CAMIT

program.

One possible simplification would be to accept both equal temperament and just
intonation. The grading algorithm could grade the exercise according to both sys-
tems, and pick the best grade. Alternatively, the grading system could switch tuning
systems for each note. This question should be investigated as part of a survey of
music teachers. Would music teachers rank performances which switched between
tuning systems highly? Would music teachers rank performances which played “in

between” the two systems highly?
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One additional feature which may be useful would be to have the computer play
back the performance with perfect intonation, but still using the student’s sound.
This is possible by performing pitch shifting as described in [22]. The benefit of using
the student’s own sound is that the student hears what she should actually be playing.
If the “perfect version” is performed with MIDI sounds, the result sounds nothing like
a real violin. If the “perfect version” is simply a recording of a professional musician
playing an expensive violin, the student may justifiably point out that it would be

impossible for her to sound exactly like that.

4.4 Conclusion

In this chapter, we discussed our method of visualizing student errors in a novel
display, understandable even by non-musicians. We discussed the ways in which
users may customize the software, both to produce more accurate analysis results,
and to create entirely new exercises to practice.

We also examined the overall structure of the games: are they actually testing
the material we wish to test? Will the grade reflect the actual abilities of students?
Do these games fulfill our overall goals of CAMIT projects? Due to the very focused

nature of the technical exercises, we can answer all these questions in the affirmative.



68

Chapter 5

Conclusion and Future Work

This research developed a Computer-Assisted Musical Instrument Tutoring system to
help music students. The rhythmic exercises will help all students; greater familiarity
with rhythms allows the student to concentrate on other aspects of their playing. The
violin intonation exercises are targeted at violin students in their first year of study.

In order to accomplish this goal, we discussed the general field of CAMIT projects
and identified specific goals to improve such projects. We showed how these goals
could be applied to this research, and how they were fulfilled in MEAWS.

We began by investigating the automatic creation of exercises for students. This
is a new area, and our attempts produced mixed results. Crafting difficulty levels
and creating all exercises on each level works well for small, targeted situations, but
this approach will not scale up to larger, more general projects. Future work on
automatic exercise creation should involve exercises being created in near-realtime,
ideally during the practice session itself.

Crafting targeted exercises allowed us to use simple transcription algorithms with-
out sacrificing accuracy. As the field of music transcription matures, it may be ap-
propriate to relax some of the constraints on exercise generation. However, in some
cases the constraints may be musically appropriate: forcing the pitch to change for

each note is quite reasonable for practicing intonation.

5.1 Future Work

This thesis has identified a number of important areas for future research. One of
the most interesting ideas is testing the grading scheme against the judgments of

experienced music teachers.
5.1.1 Objective Grading of Technical Skills

An objective, widely-accepted method of grading basic technical skills like rhythmic

and intonation accuracy would be a great boon to music education. In addition to



69

mundane uses such as as grading student exercise performances (as in MEAWS), this
would provide real quantitative data about debates in music education.

For example, one unanswered question for violin education is whether “finger-
board tape” is a good idea. “Fingerboard tapes” are small pieces of tape — thinly-cut
electrical tape, masking tape, or stickers — which are placed on the violin fingerboard
to show where the left-hand fingers should be placed. Proponents suggest that the
tape helps students learn the correct hand position; after six months to a year, the
tape is removed. Opponents argue that the tape hinders the development of a stu-
dent’s feedback loop. Skilled violinists must continually correct their finger positions
based on the auditory output, so beginners should begin learning how to do this
from the very first lesson. If students are shown the correct positions with tape, they
argue, they will rely on the tape instead of their ears. This debate has lasted for
decades (if not centuries!) and shows no sign of ending. Famous violinists and violin
teachers argue on both sides of the issue.

However, the debate could be settled if we could develop an objective intonation
grading algorithm. We could gather a large number of new violin students — there
are thousands of new violin students in music academies each year. Half of these
students would be given tape, and half of them would not have tape. We would then
test their intonation ability after six months, one year, two years, and five years. If
the survey results showed that tape or no tape produced more accurate intonation,
the question would be largely settled. If the survey results showed no statistically
significant difference, it would be even more interesting — it would mean that it did
not matter whether tape was used or not!

Objective testing would be useful for evaluating other questions. For example,
when should violin students begin shifting? Some teachers prefer to leave the students
in first position until they are very comfortable; this helps reinforce the initial hand
position. Other teachers prefer to introduce shifting quite early; violinists should be
comfortable in any position. Which method, if any, produces the best short-term and

long-term results?
5.1.2 Attributing Cause to Errors

Another possibility for future work is in estimating the cause of errors, or in other
words, splitting an error into its contributing factors. For example, if one particular
note is 0.6 MIDI pitch values sharp, the software would determine that 0.3 of the
error was caused from using the 4" finger, 0.2 of the error was caused from playing

in second position, and 0.1 of the error was random chance.
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This kind of analysis would require a great deal of data from the student’s previous
performances in order to perform the data mining. However, if the student had
practiced with this program for fifteen minutes each day for the past three months, it
may be possible. The software would track the errors produced by each finger, each
string, and each position. Using machine learning, it would break down each note’s

error into a combination of separate error factors.
5.1.3 Generating Exercises Just In Time

The ability to generate exercises in the middle of a practice session does not require
any new research; the tools already exist. However, putting the tools together, in an
easily-distributable format, is a non-trivial task.

On a GNU/Linux system, this can be done by stringing together programs on the
command-line. Oz provides the exercise creation, LilyPond creates the . png, python
creates the .exp, and MEAWS (or its successor) displays the image and grades the
result. This system requires that the user install all this software.!

However, a GNU /Linux-only solution would vastly reduce the number of potential
users. A solution for MacOS X and Windows would be more complicated, but must
be found if this tool is to be widely used.

If an internet connection could be assumed, a thin client approach may work quite
well: MEAWS (or its successor) could record and grade audio, and then communicate

with a central server to generate the next exercise.
5.1.4 Constantly Modifying the Set of Constraints

If the previous two steps were completed, we could create truly targeted exercises.
Once the software identifies a particular weakness, it could specifically include those
features in future exercises. As the student continues to practice with the program,
she spends all her time and effort developing the skills in greatest need of practice.
The program need not consider all skills evenly — if the student’s teacher specif-
ically wanted her to focus on rhythm for one week (or month), the teacher may
configure the program to weigh rhythmic mistakes more heavily than others. Con-
versely, if the teacher feels that the student would benefit from working on other
musical skills, the teacher may reduce the weighting of rhythmic mistakes. Such a

system to generate targeted exercises must allow a human teacher to direct the overall

1On a Debian GNU/Linux system, this can be done with a one-line command:
sudo apt—-get install mozart mozart-stdlib lilypond python

Other distributions include similar capabilities.
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flow: as we stated in Chapter 1, no computer can ever replace a skilled teacher’s es-
timation of a child’s mood and personality. Any broadly-focused educational system

which does not consider those human elements is doomed to failure.
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Appendix A

Papers by the Author

Portions of this thesis have appeared in previous publications; they are listed here in

chronological order.

e Adaptive Harmonization and Pitch Correction of Polyphonic Audio
Using Spectral Clustering, by Mathieu Lagrange, Graham Percival, and
George Tzanetakis [22].

This paper presented a method of splitting polyphonic audio (such as a violin
with piano). This allows us to correct violin pitches without modifying the
background sound, and provided the inspiration for some future work noted in
Chapter 4.

e Analysis of Saxophone Performance for Computer-Assisted Tutoring,
by Matthias Robine, Graham Percival, and Mathieu Lagrange [32].

This was the first version of MEAWS, prompting much discussion about CAMIT
projects and the software design in Appendix B.

e Effective Use of Multimedia for Computer-Assisted Musical Instru-
ment Tutoring, by Graham Percival, Ye Wang, and George Tzanetakis [31].
This paper provided the basis for Chapter 1.

e Generating targeted rhythmic exercises for music students with con-

straint satisfaction programming, by Graham Percival, Torsten Anders,
and George Tzanetakis [30].

This paper appears almost unchanged in the first half of Chapter 2.
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Appendix B

Program Design and Source Code

The ideas in this research were implemented in MEAWS: Musician Evaluation and
AWdition for Strings.

B.1 General Principles

The primary motivation in writing MEAWS was to create a useful tool for students
and teachers. The second motivation was to test the ideas developed in this research.

These two motivations lead to the following principles:

Cross-platform: In order for the software to be used as widely as possible, it should

work on multiple operating systems.

Freely available: In order for the software to be used as widely as possible, it should
be available under a copyright license which permits unlimited distribution.
This allows teachers and students to share copies of this software with their

friends.

Viewable source: Users should be able to view the source code. This is an impor-
tant part of the overall goal of transparency, as discussed in Section 1.3.3. In
addition, more scrutiny of the source code may result in bug fixes or suggestions

for improvement.

Don’t re-invent the wheel: Use existing libraries whenever possible. Rewriting
code that is already available is both a waste of time and invites bugs, as

existing software libraries will have received widespread testing.

Given these principles and the enormous quantity of existing software libraries
available under the GPL, it makes sense to publish MEAWS under the GPL. The

GPL [15] is a software license which essentially states “I'll share this software with
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you, as long as you share any software that you build using it.” The actual license is
much more nuanced; do not take this one-sentence summary as a complete description

of the license.

B.2 MEAWS implementation

MEAWS was written in C++. It was written with cross-platform portability in mind,

and all libraries are cross-platform?!.
B.2.1 Libraries Used
MEAWS makes use of the following software libraries:

RtAudio provides a cross-platform Application Programming Interface (API) for

realtime audio input and output.
libsndfile provides an API for reading and writing sound files.
aubio includes the modified YIN Fj detection; it was created by Brossier [6].

Qt is a cross-platform framework for desktop applications. It includes creating GUIs,
file handling, and a host of other functions for interacting with operating sys-

tems without requiring any rewriting of source code.

B.2.2 Classes

Figure B.1 shows the main classes in Meaws.

e MainWindow: this class handles the visual aspects of the main window and

passes messages amongst its children.

e AudioBackend: this class interfaces with RtAudio and libsndfile, providing au-

dio input/output with the computer microphone, speakers, and sound files.

e Metro: this classes handle the metronome. Large visual metronomes are created
with the BigMetro class in a separate Qt window, while the audio metronome

is performed with Qt’s Sound class.

e User: this class contains persistent data about the current user. It stores user-
supplied information such as their main instrument and years playing, in addi-
tion to MEAWS options such as the clapping threshold K; and minimum note
length.

'MEAWS has only been compiled and tested on MacOS X and Linux, but anybody familiar with
Windows development should have no difficulty compiling it under Windows.
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Figure B.1: Classes in MEAWS. Boxes with solid borders are classes, while boxes with
faint borders are data structures. Text beside arrows are variable names.

e Game: this class handles game-related logic, such as reading game files from
disk, picking an appropriate exercise to load, and evaluating whether the user

should advance to the next level.

In addition to the above list, there are three abstract classes which are inherited

by four classes for each level:

e AbstractExercise (inherited by RhythmExercise and IntonationExercise): this
class displays the exercise and maintains a list of Try objects. It will always

contain at least one Try, and may contain multiple Trys.

e AbstractTry (inherited by RhythmTry and IntonationTry): this class receives
audio data from AudioBackend and analyzes the data (with Aubio in the case

of IntontionTry) according to Chapter 3.

e AbstractDisplay (inherited by RhythmDisplayLines, RhythmDisplay Amps, In-
tonationDisplayBars, and IntonationDisplayPitches): this draws the result of
the analysis according to Section 4.2.1 and Section 4.3.1. The mainDisplay_ ob-
jects are RhythmDisplayLines or IntonationDisplayBars, while the popupDis-
play_ objects are RhythmDisplayAmps or IntonationDisplayPitches.
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B.3 Creating Exercises in Oz and Strasheela

The overall music representation — linking the Event and Durations lists, or the String,
Hand position, Finger, and Pitch lists — was added to Strasheela [1]. Common con-
straints such as “list must contain at least x values greater than y” were also added
to Strasheela. They may be found in contributions/gperciva/{eventdurs,
rhythm-funcs, pitchfingers, intonation-funcs}. Source code to pro-

duce individual levels was kept in a subdirectory of the MEAWS source code.
B.3.1 Sample: Functions Involved in Rhythms Level 2

As an example of constraint programming, we examine rhythm exercise level 2 in de-
tail. This level introduced sixteenth notes in pairs replacing an eighth note. Relevant
functions added to Strasheela:

proc {Setup Beats BeatDivisions Events Durations}
NumEvents = BeatsxBeatDivisions

in
%% setup lists, add fake note at end
Durations = {FD.list NumEvents O#NumEvents}
Events = {FD.list NumEvents+1l 0#2}
%% "courtesy one" to simply Duration defintions

Nth Events NumEvents+1l} =: 1

—_

%% first onset can’t be "continue note"
{Nth Events 1} \=: 0

for X in 1..NumEvents do
%% setup maxmium durations

{Nth Durations X} =<: NumEvents+1-X

%% align rests
{FD.equi

({Nth Durations X} =: 0)
({Nth Events X} =: 0)

1}

%% align 1 dur

{FD.equi
{Nth Durations X} =: 1
{FD.conj



({Nth Events X} >: 0)
({Nth Events X+1} >: 0)
}
1}

%% align 2+ dur
for D in 2..NumEvents do
if ( X =< (NumEvents+1-D) ) then
{FD.equi
({Nth Durations X} =: D)
{FD.conj
({Nth Events X} >: 0)
{FoldR
{LUtils.sublist Events X+1 X+D-1}
fun {$ X Y}
{FD.conj (X=:0) Y}
end
({Nth Events X+D} >: 0)
H}
1}
end
end
end

end

proc {EventEvery List NumEvents}

{ForAll {LUtils.everyNth List NumEvents}

proc {$ X}
X \=: 0
end}

end

proc {NoRests List}
{ForAll List
proc {$ X}
X\=:2
end}

end

82
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proc {NoTwoIdenticalAdjacentBeats Durs BeatDivisions}
{Pattern.forNeighbours
{LUtils.everyNth Durs BeatDivisions}
2
proc {$ X}
( {Nth X 1} \=: {Nth X 2} )
end}

end

proc {MinDursOnBeats Durs BeatDivisions DurValue NumDurs}
{FD.sum {Map
{LUtils.everyNth Durs BeatDivisions}
fun {$ X} (X=:DurValue) end}
">=:’ NumDurs}

end

proc {MinDurs Durs DurValue NumDurs}

{FD.sum {Map Durs fun {$ X} (X=:DurValue) end} ’'>=:’ NumDurs}
end

Functions retained in the individual level:

%% actual level definition

proc {GetEvents Sol}
Durs Events

in
Sol = Events#Durs
%% setup defines the Event and Durs list
{EventDurs.setup Beats BeatDivisions Events Durs}
%% actual level definition
{RhythmFuncs.eventEvery Events BeatDivisions}
{RhythmFuncs.noRests Events}
{SixteenthsTogether Durs}

if (Interesting) then
{RhythmFuncs.noTwoIdenticalAdjacentBeats Durs BeatDivisions}
{NumDurs Durs}

{HasEighthSixteenth Durs}



{NoEighthEighth Durs}

end

{FD.distribute ff {Append Events Durs}}

end

proc {SixteenthsTogether Durs}
{ForAll
{Pattern.adjoinedSublists Durs 2}

proc {$ X}
{FD.equi
( {Nth X 1} =: 1)
( {Nth X 2} =: 1)
1}
end}

end

proc {HasEighthSixteenth Durs}
{FD.sum
{Map

{Pattern.adjoinedSublists Durs BeatDivisions}

fun {$ X}
{FD.disj
{FD.conj
{FD.conj
( {Nth X 1}
( {Nth X 2}
}
({Nth X 3} =: 2)
}
{FD.conj

Il Il
e
- -

{FD.conj
( {Nth X 3}
( {Nth X 4}

}
({Nth X 1} =: 2)

Il Il
e
- -

84
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end}
r>=2" l}

end

proc {NoEighthEighth Durs}

{ForAll
{Pattern.adjoinedSublists Durs BeatDivisions}
proc {$ X}
{FD.conj

( {Nth X 1} =: 2 )

( {Nth X 3} =: 2 )
0}
end}

end

proc {NumDurs Durs}
{RhythmFuncs.minDurs Durs 1 6}
{RhythmFuncs.minDurs Durs 2 2}
{RhythmFuncs.minDursOnBeats Durs BeatDivisions 4 1}

end

Beats=4
BeatDivisions=4

BaseFilename='rhythms/sixteen02/’

B.3.2 Importing Exercises into MEAWS

Strasheela exported the exercises as LilyPond input files, which were then compiled
into png (image) and midi files. The midi files were further processed to extract
the pitches and times; the png files were left untouched. When MEAWS loaded an
exercise, it displayed the png and set the expected answers to the onsets or pitches
loaded from the file. The “exercise answer” files were simply text files. As such, it is
very easy to create new exercises.

New exercises may be created by writing the sheet music in GNU/LilyPond. The
data/ directory of MEAWS includes a header. 1y file to assist in creating a single
system of music. Once the lilypond input file has been written, run the python script
makeexample.py on the file. This will produce a .png and .exp file which may
be loaded by MEAWS.

New games may also be created. The directory data/game/ contains two sam-
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ple games, rhythms.txt and intonation.txt. A new game may be created by
using these files as the basis. Alternatively, a python script may be created to produce
the game files. The same directory contains two python scripts, makerhythms.py
and makeintonation.py. These scripts are easy to understand and may be mod-

ified to produce different games.
B.3.3 Discussion of Implementation

The disk space for each exercise is almost entirely spent in the png images. The
images range from 1 Kb to 3 Kb, while the answer files are less than 0.1 Kb. There are
approximately 350 rhythm exercises and 900 intonation exercises, producing a total
data size of slightly less than 4 Mb. This is an appropriate size for such a program,
but clearly a future version of MEAWS cannot contain a library of thousands of
exercises if it is to remain within sensible download size limits.

One solution would be to render sheet music directly in MEAWS. Given my
experience with GNU/LilyPond, I am reluctant to pursue this — producing high-
quality sheet music is much more difficult than people realize. That said, technical
exercises do not need to be beautifully engraved. If the data files only specified the
notes to display, the size of the data could be reduced by almost 400 times.

Another possibility would be to download new exercises in the background. As-
suming that MEAWS would only be used on a computer with a working internet con-
nection — an assumption that is increasingly easy to grant — MEAWS could silently
download a new set of 100 exercises every time the user was almost finished with the

current exercises.
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Appendix C

User Study

A user study was performed to gather feedback about MEAWS. Potential users were
invited to download and try MEAWS on their own, and provide comments via an

anonymous web form.

C.1 Qualitative Comments

In this study, qualitative comments (“The rhythm practice was good; I really im-
proved” or “I couldn’t figure out how to use the intonation exercises; I always got a
red screen”) were sought rather than quantitative data. The latter could have been
provided if MEAWS sent data about user usage over the internet — this would have
provided exact data about which exercises were attempted and what the scores were.
Over time, this would provide solid evidence of the improvement (or not!) of users.
However, tracking usage in this way would involve a greater invasion of privacy, so it
was decided to perform a simple study first to establish whether future studies (with

less privacy) are warranted.

C.2 Study Results and Comments

There were a surprising number of technical and user interface problems. As a re-
sult, only four people filled out the anonymous web form after successfully running
MEAWS. Seven people sent email directly to me, discussing technical problems or
expressing disappointment that the MEAWS intonation was only for violins and not
for vocal training. Due to the design of the study, we do not know how many people
downloaded MEAWS and ran it successfully without providing feedback.

Many people expressed disappointment that MEAWS was not available on Win-
dows; due to my inexperience with Windows software development, MEAWS was
only available on MacOS X and Linux. However, some users still have problems
with the Linux version: it used ALSA (Advanced Linux Sound Architecture). One
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user reported that (s)he could not record sound with MEAWS on his system run-
ning JACK (a low-latency audio server for Unix systems; according to this user it
is “the way of the future”). We were surprised that the newer JACK system could
not support ALSA applications (possibly with some emulation layer), but we have
little experience with Linux audio systems so could not suggest any alternatives, nor
provide a fix for MEAWS. A few users reported difficulty setting K, the threshold

for clap detection.
C.2.1 User1

This user is a skilled musician whose principal instrument is the clarinet, and has
been playing and practicing music for over 20 years.
Rhythm Comment:!

I had great fun trying the rhythm exercises — it was definitely addic-
tive. I can’t actually remember whether I reached “hard” or “challenging”
as it’s a while since I last tried them. I was surprised at the scores at first,
but realized that the ability to be exactly on the beat is just as important
as knowing how often to clap — these exercises helped me focus on keeping
a strict beat.

Although as a “skilled” performer I found the early levels easy (apart
from the “staying on the beat” issue), I appreciated the way the exercises

gradually led students to master increasing levels of difficulty.

Intonation Comment:

I can’t remember what level I got to — I think it was “simple”, but it
may have been “easy”.

Like the rhythm exercises, these intonation exercises were fun and
very addictive. As a novice my results were somewhat random — having
achieved a score of 89% at one level quite soon after reaching that level,
I decided that this must have been luck, and I was correct — it took me
many more attempts to get back to that level. I can’t remember whether
I would have been allowed to “move up” after that lucky try, but I don’t
think I should have been — I think students should have to get over 80%
at least twice before going on to the next level.

With these exercises to guide me, I'm even tempted to try to learn

the violin again — about twenty years after I gave it up the first time.

IThese comments are reproduced verbatim, including any spelling mistakes or typos.
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A feature I would like to see included would be to hear the correct
passage played by the computer before I tried it. On one occasion (the
minor key exercise), I practised the exercise with F#s instead of Fs, so
always got the error screen — if I'd heard the exercise first (or been able
to listen to it after my first attempt), I would have realized my mistake
sooner.

This will be a very useful tool for motivated beginners — I wish there
was something like this I could use for clarinet or voice exercises. I think
it will also appeal to those who are not normally highly motivated — the

desire to beat one’s previous score is strong in most people.

Response:

This user’s confusion about the “minor key exercise” is understandable — the first
four levels share the same key signature, and there is no explicit warning that the
key signature has changed. Providing such a warning (either as a pop-up box, or
highlighting the key signature on levels where it has changed) would be the easiest
solution. Playing the correct audio for each exercise would be a fairly substantial new
feature — either adding MIDI synthesis, recording hundreds of exercises, or adding
pitch shifting to MEAWS as described in [22].

C.2.2 User 2

This user is a professional musician whose principal instrument is classical guitar,
and has been playing music for over 20 years and practicing for between 10-19 years.

Rhythm Comment:
I liked the rhythm part very much. You really have to be accurate to

line it up just right. The rhythm part is really nice, though. I think I'd
like it better if I didn’t have to go into a menu and choose each excercise
manually, though. If it would automatically go to the next one that would
be great. Maybe the user could choose a difficulty level and that would
be the starting place, then each exercise after that would be chose by the
software based on how well the user did. If s/he did very poorly, it would
choose and easier one, and if s/he did well, it would proceed to harder

ones.

Intonation Comment:
I don’t think I got the intonation part to work right. I didn’t see any

instructions on it and I wasn’t sure whether to try to do the intervals

using relative pitch or exact A-440 or what.
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Response:

This user apparently choose “Open Exercise” instead of “Open Game”. The
former option was added mainly for testing purposes; instead of beginning a game,
it only opens a single exercise. This is an embarrassing user interface mistake on my
part: most users will never want this function, so it should definitely not be part of
the main interface. At the very least it should be hidden under an “Advanced” or
“Testing” menu, if not disabled entirely when creating the finished version for public
use.

Given the user’s principal instrument of guitar and the question about “relative
or exact A-440 or what”, we suspect that the user was not attempting to play violin
for the intonation portion. This is understandable: musicians know that intonation
affects all instruments?, so the division of “violin intonation” vs. “other instrument
intonation” is not readily apparent. The user interface of MEAWS must be modified
to take this into account — the audio analysis will not work on classical guitars, and
the entire layout of the exercises (the gradual progression of easier to harder exercises)

will not make sense for any other instrument.
C.2.3 User 3

This user is a skilled musician whose principal instrument is the piano, and has been
playing music for between 10-19 years and practicing for 1-3 years.
Rhythm Comment:
I've spent several mintues trying to pass the first level, just to find the

good parameters. Then I passed all levels.

e (important) you should make it clear that the intro is 4 ticks (and
that the 1 tick is when the user hits “space”, and not the following
tick). Perhaps a visual indication “1/2/3/4” on the metronome could
help (just by looking on the blue/red balls, I've no idea where is the
strong beat). (The “align first beat” option seems intersting, but it
seems to fail with syncopas : it aligns the first clap on the first beat,

and not on the first clap of the exercice).

e (important) the rhythm should end on the 1st quarter of the follow-
ing mesure, epecially for easy levels : for a beginner, I think it’s very
difficult to clap
cdcdcdc8c

2Even pianos can be out of tune, although fixing intonation on a piano may require relatively
unusual skills and tools.
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finishing on two eights. The rythm
cdcdcdc8c|cd

seems me more fair.

e (suggestion) you could add more difficult levels. Perhaps 2-voice
rythms, with simultaneous tuplets + eights 7 Of course, in this case
you could check only the global rhythm : only the exercice display
to the user will be “polyphonic”.

Intonation Comment:

I'm sure it will be someday a great tool for human voices :)

Response:

This user is mistaken when (s)he writes “the intro is 4 ticks”; MEAWS shifts
the detected claps as appropriate. The introduction could be 40 ticks if the student
wished it to be so. It understandable that a musician may think an introduction
was 4 or 8 beats, since the entire exercise was in 4/4 time. Still, evidently some
combination of the user’s background knowledge / expectation and the MEAWS
interface suggested to him or her that this “4 ticks” was an absolute requirement.
The MEAWS user interface should be modified to correct this misunderstanding.

The user’s report about “align first beat” not working if an exercise starts with
a rest is quite valid, however. This bug must be fixed before further testing is at-
tempted.

The user’s suggestion to add an extra note — the downbeat of the next bar — is
an excellent idea. It parallels the “courtesy 1”7 which we added to the Event and
Duration lists in Chapter 2.

The user’s final suggestion, that we add more rhythm levels, is certainly a good
long-term idea. However, in the short term I will focus on fixing the other problems

and beginning more widespread testing of MEAWS.
C.2.4 User 4

This user is a skilled musician whose principal instrument is the violin, and who has
been playing and practicing music for between 10-19 years.
Rhythm Comment:
I found it a little hard to stay with the metronome. Some sort of
analogue (or subdivided) metronome would have been easier to follow.
Also, I thought rushing (or slowing down) was heavily penalised compared

with simple wrong rhythms.
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Rhythm Comment:
I dislike equal-tempered tuning very much, particularly when playing
open fifths! Next time, I'll change the settings to use “Just intonation.”
I had trouble getting a low B (below middle C) recognized; I had to

play that exercise several times since I kept getting a yellow background.

Response:

As described in Chapter 3, we insist on following the metronome’s tempo in order
to simplify the analysis. In real music, following an external tempo may or may not
be so important — when playing solo or with a small group, the tempo may vary.
However, when playing in an orchestra with eighty people, one person rushing or
slowing down causes more problems than simply omitting some notes in order to
stay at the group’s tempo.

We are not certain what prompted the user’s difficulty with the “low B” — the
pitch analysis should have no difficulty with that note. It is possible that the user
was playing level 7, which requires a Bb instead of Bj. The only information about
this b is given in the key signature, but MEAWS gives no explicit warning about the

key signature changes, as we discussed with User 1.

C.3 Discussion of Study

Due to all the technical problems and misunderstandings about the user interface,
this user study was quite valuable. Programmers are notoriously bad at guessing how
other people will attempt to use their software, and we were no exception.

Based on the technical difficulties with MEAWS, we are seriously considering
abandoning the C++ implementation and rewriting it in Flash. Flash 9 supports
microphone input in addition to simple graphical user interfaces, so the rhythmic
exercises could be performed in this language. Instead of downloading MEAWS,
users would simply visit a web page, wait a few seconds for the program to load, and
then begin clapping.

Unfortunately, this would split MEAWS into MEAWS Rhythms and MEAWS
Intonation. Calculating the RMS values required to grade rhythmic exercises should
pose no problem, but Flash does not contain any built-in pitch detection, and we
doubt that the language is fast enough to perform Fast Fourier Transforms with any
degree of speed. However, such a split may not necessarily be a bad thing. The violin
intonation exercises are only useful for beginning violinists; singers who attempt to
practice their sight-singing using MEAWS intonation (as it currently stands) will be
sorely disappointed. By splitting MEAWS into rhythmic exercises implemented in
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Flash and violin intonation exercises implemented in C++, we can hopefully reduce
the number of people mistakenly attempting the intonation exercises.

The interest in sight-singing exercises was surprising — half of the survey partic-
ipants expressed an interest in it, as did over half of the people who emailed me
directly. In retrospect, this should not have been startling: there are many, many
more amateur singers than beginning violin students. In addition, there are many
more “complete beginner” amateur singers than there are “complete beginner” vi-
olinists — buying a violin costs hundreds of dollars, and thus discourages extremely
casual would-be musicians from beginning to play violin.

To accommodate this interest, the audio analysis of MEAWS would need to be
improved somewhat. Singers — especially amateur singers — do not produce as con-
stant a pitch as violinists do, and note boundaries are not as abrupt as we see on a
violin. The note segmentation would need to be a bit more sophisticated (potentially
even marking 3-10 frames as “boundary material,” not belonging to any note), but
this is certainly within the current capabilities of music transcription. In addition,
an entirely new set of exercises levels would need to be created for singers. The music
representation would be much easier than the violin intonation, however: a list of
Pitches and possibly a list of Intervals is all that would be required.

Finally, some amount of automatic configuration for K, should be used. Perhaps
the first time the user runs MEAWS, it should ask the user to clap four times.
MEAWS would then analyze the audio and pick the largest four peaks, and compare
their values to the remaining peaks. If it can find a threshold value which makes
sense (say, the top four peaks were all above 0.25, while the remaining peaks were all
below 0.15), then MEAWS should automatically set K; = 0.2.

In addition, if the user appears to have clapped the wrong number of times,
MEAWS should attempt to re-calibrate K;. For example, if the expected number of
claps for a particular exercise was 12 but the user only appears to have clapped 11
times, MEAWS should automatically attempt K; = 0.15 and K; = 0.10. If one of
those values produces 12 detected claps, then MEAWS should accept this new value

of K; and grade the exercise accordingly.

C.4 Conclusion

The user study successfully identified a number of problems that must be addressed
before undertaking a large quantitative study. In addition to various user inter-
face tweaks, we shall seriously consider splitting MEAWS into separate programs for

rhythmic and intonation exercises, as well as adding intonation exercises for singers.



